• Title/Summary/Keyword: computational algorithm

Search Result 4,372, Processing Time 0.036 seconds

ITERATIVE ALGORITHM FOR COMPLETELY GENERALIZED QUASI-VARIATIONAL INCLUSIONS WITH FUZZY MAPPINGS IN HILBERT SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.451-463
    • /
    • 2010
  • In this paper, we introduce and study a class of completely generalized quasi-variational inclusions with fuzzy mappings. A new iterative algorithm for finding the approximate solutions and the convergence criteria of the iterative sequences generated by the algorithm are also given. These results of existence, algorithm and convergence generalize many known results.

Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing

  • Rama Mohan Rao, A.;Arvind, N.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.239-268
    • /
    • 2007
  • This paper deals with optimal stacking sequence design of laminate composite structures. The stacking sequence optimisation of laminate composites is formulated as a combinatorial problem and is solved using Simulated Annealing (SA), an algorithm devised based on inspiration of physical process of annealing of solids. The combinatorial constraints are handled using a correction strategy. The SA algorithm is strengthened by embedding Tabu search in order to prevent recycling of recently visited solutions and the resulting algorithm is referred to as tabu embedded simulated Annealing (TSA) algorithm. Computational performance of the proposed TSA algorithm is enhanced through cache-fetch implementation. Numerical experiments have been conducted by considering rectangular composite panels and composite cylindrical shell with different ply numbers and orientations. Numerical studies indicate that the TSA algorithm is quite effective in providing practical designs for lay-up sequence optimisation of laminate composites. The effect of various neighbourhood search algorithms on the convergence characteristics of TSA algorithm is investigated. The sensitiveness of the proposed optimisation algorithm for various parameter settings in simulated annealing is explored through parametric studies. Later, the TSA algorithm is employed for multi-criteria optimisation of hybrid composite cylinders for simultaneously optimising cost as well as weight with constraint on buckling load. The two objectives are initially considered individually and later collectively to solve as a multi-criteria optimisation problem. Finally, the computational efficiency of the TSA based stacking sequence optimisation algorithm has been compared with the genetic algorithm and found to be superior in performance.

A New Bussgang Blind Equalization Algorithm with Reduced Computational Complexity (계산 복잡도가 줄어든 새로운 Bussgang 자력 등화 알고리듬)

  • Kim, Seong-Min;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1012-1015
    • /
    • 2011
  • The decision-directed blind equalization algorithm is often used due to its simplicity and good convergence property when the eye pattern is open. However, in a channel where the eye pattern is closed, the decision-directed algorithm is not guaranteed to converge. Hence, a modified Bussgang-type algorithm using a hyperbolic tangent function for zero-memory nonlinear(ZNL) function has been proposed and applied to avoid this problem by Filho et al. But application of this algorithm includes the calculation of hyperbolic tangent function and its derivative or a look-up table which may need a large amount of memory due to channel variations. To reduce the computational and/or hardware complexity of Filho's algorithm, in this paper, an improved method for the decision-directed algorithm is proposed. In the proposed scheme, the ZNL function and its derivative are respectively set to be the original signum function and a narrow rectangular pulse which is an approximation of Dirac delta function. It is shown that the proposed scheme, when it is combined with decision-directed algorithm, reduces the computational complexity drastically while it retains the convergence and steady-state performance of the Filho's algorithm.

An Improved Multi-level Optimization Algorithm for Orthotropic Steel Deck Bridges (강바닥판교의 개선된 다단계 최적설계 알고리즘)

  • 조효남;이광민;최영민;김정호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.237-250
    • /
    • 2003
  • Since an orthotropic steel deck bridge has large number of design variables and shows complex structural behavior, it would be very difficult and impractical to directly use a Conventional Single Level (CSL) optimization algorithm for its optimum design. Thus, in this paper, an Improved Multi Level Design Synthesis (IMLDS) optimization algorithm is proposed to improve the computational efficiency. In the proposed IMLDS algorithm, a coordination method is introduced to divide the bridge into main girders and orthotropic steel deck with preserving the characteristics of the structural behavior. For an efficient optimization of the bridge, the IMLDS algorithm incorporates the various crucial approximation techniques such as constraints deletion, Automatic Differentiation (AD), stress reanalysis, and etc. In the case of orthotropic steel deck system, optimum design problems are characterized by mixed continuous discrete variables and discontinuous design space. Thus, a modified Genetic Algorithm (GA) is also applied to optimize discrete member design for orthotropic steel deck. From the numerical example, the efficiency and convergency of the IMLDS algorithm proposed in this paper is investigated. It may be positively stated that the IMLDS algorithm will lead to more effective and practical design compared with previous algorithms.

ComputationalAalgorithm for the MINQUE and its Dispersion Matrix

  • Huh, Moon Y.
    • Journal of the Korean Statistical Society
    • /
    • v.10
    • /
    • pp.91-96
    • /
    • 1981
  • The development of Minimum Norm Quadratic Unbiased Estimation (MINQUE) has introduced a unified approach for the estimation of variance components in general linear models. The computational problem has been studied by Liu and Senturia (1977) and Goodnight (1978, setting a-priori values to 0). This paper further simplifies the computation and gives efficient and compact computational algorithm for the MINQUE and dispersion matrix in general linear random model.

  • PDF

Analysis of computational delay effect on digital PID control system (디지틀 PIC 제어시스템의 계산 지연 영향 분석)

  • 이상정;홍석민;윤기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.529-533
    • /
    • 1990
  • This paper treats the computational time delay issue in designing digital control systems. The computational time delay margin, within which the closed-loop stability is guaranteed, is analyzed using Rouche theorem. A PID control algorithm is proposed for compensating the computational time delay. Finally, the analyzed and the exact computational time delay margins are compared, and the performance of the proposed PID controller is shown through an illustrative example.

  • PDF

Four Anchor Sensor Nodes Based Localization Algorithm over Three-Dimensional Space

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.349-358
    • /
    • 2012
  • Over a wireless sensor network (WSN), accurate localization of sensor nodes is an important factor in enhancing the association between location information and sensory data. There are many research works on the development of a localization algorithm over three-dimensional (3D) space. Recently, the complexity-reduced 3D trilateration localization approach (COLA), simplifying the 3D computational overhead to 2D trilateration, was proposed. The method provides proper accuracy of location, but it has a high computational cost. Considering practical applications over resource constrained devices, it is necessary to strike a balance between accuracy and computational cost. In this paper, we present a novel 3D localization method based on the received signal strength indicator (RSSI) values of four anchor nodes, which are deployed in the initial setup process. This method provides accurate location estimation results with a reduced computational cost and a smaller number of anchor nodes.

ADVANCED DOMAIN DECOMPOSITION METHOD BY LOCAL AND MIXED LAGRANGE MULTIPLIERS

  • Kwak, Junyoung;Chun, Taeyoung;Cho, Haeseong;Shin, Sangjoon;Bauchau, Olivier A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents development of an improved domain decomposition method for large scale structural problem that aims to provide high computational efficiency. In the previous researches, we developed the domain decomposition algorithm based on augmented Lagrangian formulation and proved numerical efficiency under both serial and parallel computing environment. In this paper, new computational analysis by the proposed domain decomposition method is performed. For this purpose, reduction in computational time achieved by the proposed algorithm is compared with that obtained by the dual-primal FETI method under serial computing condition. It is found that the proposed methods significantly accelerate the computational speed for a linear structural problem.

A Comparative Study of Efficient Transient Analysis Algorithm for Parabolic Equations (Parabolic 방정식의 효율적인 시간해석 알고리즘에 대한 비교연구)

  • 최창근;이은진;유원진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.68-74
    • /
    • 1998
  • A finite element analysis for physical phenomenon which are governed by parabolic equation, has some inefficiencies caused by much computational time and large storage space. In this paper, a comparative study is performed to suggest the best efficient transient analysis algorithms for parabolic equations. First, the general finite element analysis techniques are summarized in views of formulation procedures, treatments of convection terms. and time stepping methods. Results of several combinations applied to one dimensional convection-diffusion equation and Burger equation are represented and compared using some criteria such as accuracy, stability, and computational time. Through the results, some guidelines to select a algorithm for solving parabolic equations are proposed for diffusion dominant and convection dominant cases. Finally applicability of two dimensional extension of the result is also discussed.

  • PDF

An optimized mesh partitioning in FEM based on element search technique

  • Shiralinezhad, V.;Moslemi, H.
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.311-320
    • /
    • 2019
  • The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the proposed algorithms is demonstrated in numerous examples for different size of substructures.