• Title/Summary/Keyword: computation-aware

Search Result 29, Processing Time 0.021 seconds

Computation Controllable Mode Decision and Motion Estimation for Scalable Video Coding

  • Zheng, Liang-Wei;Li, Gwo-Long;Chen, Mei-Juan;Yeh, Chia-Hung;Tai, Kuang-Han;Wu, Jian-Sheng
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.469-479
    • /
    • 2013
  • This paper proposes an efficient computation-aware mode decision and search point (SP) allocation algorithm for spatial and quality scalabilities in Scalable Video Coding. In our proposal, a linear model is derived to allocate the computation for macroblocks in enhancement layers by using the rate distortion costs of the base layer. In addition, an adaptive SP decision algorithm is proposed to decide the number of SPs for motion estimation under the constraint of the allocated computation. Experiment results demonstrate that the proposed algorithm allocates the computation resource efficiently and outperforms other works in rate distortion performance under the same computational availability constraint.

Active Unit Selection Method for Computation Migration in Temperature-Aware Microprocessors (온도 인지 마이크로프로세서에서 연산 이관을 위한 유닛 선택 기법)

  • Lee, Byeong-Seok;Kim, Cheol-Hong;Lee, Jeong-A
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2010
  • Dynamic Thermal Management (DTM) degrades the processor performance for lowering temperature. For this reason, reducing the peak temperature on microprocessors can improve the performance by reducing the performance loss due to DTM. In this study, we analyze various unit selection techniques for computation migration. According to our simulation results, dynamic computation migration based on the thermal difference between the units shows best performance among compared models.

Mobility-Aware Mesh Construction Algorithm for Low Data-Overhead Multicast Ad Hoc Routing

  • Ruiz, Pedro M.;Antonio F., Gomez-Skarmeta
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.331-342
    • /
    • 2004
  • We study the problem of controlling data overhead of mesh-based multicast ad hoc routing protocols by adaptively adding redundancy to the minimal data overhead multicast mesh as required by the network conditions. We show that the computation of the minimal data overhead multicast mesh is NP-complete, and we propose an heuristic approximation algorithm inspired on epidemic algorithms. In addition, we propose a mobility-aware and adaptive mesh construction algorithm based on a probabilistic path selection being able to adapt the reliability of the multicast mesh to the mobility of the network. Our simulation results show that the proposed approach, when implemented into ODMRP, is able to offer similar performance results and a lower average latency while reducing data overhead between 25 to 50% compared to the original ODMRP.

Energy Aware Task Scheduling for a Distributed MANET Computing Environment

  • Kim, Jaeseop;Kim, Jong-Kook
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.987-992
    • /
    • 2016
  • This study introduces an example environment where wireless devices are mobile, devices use dynamic voltage scaling, devices and tasks are heterogeneous, tasks have deadline, and the computation and communication power is dynamically changed for energy saving. For this type of environment, the efficient system-level energy management and resource management for task completion can be an essential part of the operation and design of such systems. Therefore, the resources are assigned to tasks and the tasks may be scheduled to maximize a goal which is to minimize energy usage while trying to complete as many tasks as possible by their deadlines. This paper also introduces mobility of nodes and variable transmission power for communication which complicates the resource management/task scheduling problem further.

Securing a Cyber Physical System in Nuclear Power Plants Using Least Square Approximation and Computational Geometric Approach

  • Gawand, Hemangi Laxman;Bhattacharjee, A.K.;Roy, Kallol
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.484-494
    • /
    • 2017
  • In industrial plants such as nuclear power plants, system operations are performed by embedded controllers orchestrated by Supervisory Control and Data Acquisition (SCADA) software. A targeted attack (also termed a control aware attack) on the controller/SCADA software can lead a control system to operate in an unsafe mode or sometimes to complete shutdown of the plant. Such malware attacks can result in tremendous cost to the organization for recovery, cleanup, and maintenance activity. SCADA systems in operational mode generate huge log files. These files are useful in analysis of the plant behavior and diagnostics during an ongoing attack. However, they are bulky and difficult for manual inspection. Data mining techniques such as least squares approximation and computational methods can be used in the analysis of logs and to take proactive actions when required. This paper explores methodologies and algorithms so as to develop an effective monitoring scheme against control aware cyber attacks. It also explains soft computation techniques such as the computational geometric method and least squares approximation that can be effective in monitor design. This paper provides insights into diagnostic monitoring of its effectiveness by attack simulations on a four-tank model and using computation techniques to diagnose it. Cyber security of instrumentation and control systems used in nuclear power plants is of paramount importance and hence could be a possible target of such applications.

Cost-Aware Scheduling of Computation-Intensive Tasks on Multi-Core Server

  • Ding, Youwei;Liu, Liang;Hu, Kongfa;Dai, Caiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5465-5480
    • /
    • 2018
  • Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud computing. Multi-core processors are widely used in mobile devices, personal computers, and servers. Existing energy efficient task scheduling methods chiefly focus on reducing the energy consumption of the processor itself, and assume that the cores of the processor are controlled independently. However, the cores of some processors in the market are divided into several voltage islands, in each of which the cores must operate on the same status, and the cost of the server includes not only energy cost of the processor but also the energy of other components of the server and the cost of user waiting time. In this paper, we propose a cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. Tasks are first allocated to cores, and optimal frequency of each core is computed, and the frequency of each voltage island is finally determined. The experiments' results show the cost of ICAS is much lower than the existing method.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

Power-Aware Motion Estimation for Low-Power Multimedia Communication (저전력 멀티미디어 통신을 위한 전력 의식 움직임 추정 기법)

  • Lee, Seong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.149-156
    • /
    • 2004
  • In this paper, novel power-aware motion estimation is proposed for low-power multimedia communication. In the video compression, motion estimation dominates the total power consumption, where better performance usually requires more power consumption. Among several motion estimation algorithms with different performance and power, the proposed motion estimation adaptively selects the optimal algorithm during run-time, considering the trade-off between performance and power. The proposed motion estimation can be easily applied to various motion estimation algorithms with negligible computation or hardware overhead. According to simulation results, the proposed motion estimation reduces the power consumption to 1/15.7~1/5.6 without performance degradation, when compared to the conventional algorithms.

Using Context Information to Improve Retrieval Accuracy in Content-Based Image Retrieval Systems

  • Hejazi, Mahmoud R.;Woo, Woon-Tack;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.926-930
    • /
    • 2006
  • Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.

  • PDF

Energy-aware Management in Wireless Body Area Network System

  • Zhang, Xu;Xia, Ying;Luo, Shiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.949-966
    • /
    • 2013
  • Recently, Wireless Body Area Network (WBAN) has promise to revolutionize human daily life. The need for multiple sensors and constant monitoring lead these systems to be energy hungry and expensive with short operating lifetimes. In this paper, we offer a review of existing work of WBAN and focus on energy-aware management in it. We emphasize that nodes computation, wireless communication, topology deployment and energy scavenging are main domains for making a long-lived WBAN. We study the popular power management technique Dynamic Voltage and Frequency Scaling (DVFS) and identify the impact of slack time in Dynamic Power Management (DPM), and finally propose an enhanced dynamic power management method to schedule scaled jobs at slack time with the goal of saving energy and keeping system reliability. Theoretical and experimental evaluations exhibit the effectiveness and efficiency of the proposed method.