• Title/Summary/Keyword: compressive strength of standard

Search Result 552, Processing Time 0.032 seconds

An Experimental Study on the Engineering Properties of Concrete according to W/C and Replacement Ratio of Bottom Ash (물-시멘트비 및 바텀애쉬 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jeong, Yong;Oh, Bok-Jin;Kim, Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.840-847
    • /
    • 2003
  • Recently, the coal-ash production has been increased by increase of consumption of electric power. So it is important to secure a reclaimed land and treatment utility for coal-ash. This is an experimental study to compare and analyze the engineering properties of concrete according to W/C and replacement ratio of bottom ash. For this purpose, the mix proportions of concrete according to W/C(40, 50, 60%) and replacement ratio of bottom ash(0, 10, 20, 35, 50%) were established, and then tested for slump, chloride content, setting time, bleeding content, compressive strength. Also the durability test of concrete with W/E 60% was performed. According to test results, it was found that the bleeding content of concrete decreased as the replacement ratio of bottom ash increased. And the chloride content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloride content of fresh concrete $0.30kg/m^3$ below("concrete standard specification" regulation value). The compressive strength of concrete using the bottom ash was similar to that of BA0 concrete after 28 days of curing and the carbonation depth of concrete was increased according to increase of the replacement ratio of bottom ash.

Characteristics of Recycled Aggregate Powder Containing Mortar Depending on Grinding Efficiency (분쇄 효율에 따른 순환골재 분말 혼입 모르타르의 특성)

  • Bang, Jinwook;Jang, Youngil;Lee, Jongwon;Mun, Seokho;Chu, Hyunseung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.116-121
    • /
    • 2019
  • In order to evaluating applicability of RAP (recycled aggregate powder) in mortar, in this study, physical and mechanical tests was carried out. Material characteristics of recycled aggregate and RAP were evaluated and the mechanical properties of mortar replaced with RAP were analyzed. Test result of sieve analysis showed that as the milling time increased the fineness modulus was decreased and the distribution of 0.6 mm particle size was found to increase. The fluidity of mortar mixture substituted with RAP tended to increase than Plain mixture. It was result that the increasing fluidity was affected by unreacted surplus water in the mortar as the binder was replaced with RAP. From the compressive strength result of the mortar subjected to RAP, it was found that the RAP was able to replace up to about 10% of unit binder weight although the compressive strength of mortar was decreased as the RAP replacement increased. From the above study, it can be concluded that the physical properties of RAP satisfied the quality standard of aggregate for replacement with fine aggregate. Moreover, in case of the RAP was replaced up to 10% of unit cement weight, it was able to be possible to improve fluidity and compressive strength of mortar.

Effect of Engineering Properties on Resilient Modulus of Cohesive Soil as Subgrade (세립토의 회복탄성계수(Mr)에 대한 지반물성치의 영향)

  • Kim, Dong-Gyou;Lee, Ju-Hyung;Hwang, Young-Cheol;Chang, Buhm-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.67-74
    • /
    • 2013
  • The objective of this study was to identify the effect of engineering properties on the resilient modulus ($M_r$) of cohesive soils as subgrade. Eight representative cohesive soils representing A-6, and A-7-6 soil types collected from road construction sites, were tested in the laboratory to determine their basic engineering properties. The laboratory tests for the engineering properties were Atterberg limits test, sieve analysis, hydrometer test, Standard Proctor compaction test, and unconfined compressive strength test. Resilient modulus test and unconfined compressive strength test were conducted on unsaturated cohesive soils at three different moisture contents (dry of optimum moisture content, optimum moisture content, and wet of optimum moisture content). The increase in moisture content considerably affected the decrease in the resilient modulus. The resilient modulus increased with an increase in maximum unconfined compressive strength, percent of clay, percent of silt and clay, liquid limit and plasticity index. The resilient modulus decreased with an increase in percent of sand.

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

The Solidification Characteristics of Recycled Aggregate Mixed with Incineration Ash and Waste Concrete (소각재와 폐콘크리트를 이용한 재생골재의 고형화 특성)

  • Yeon, Ikjun;Ju, Soyoung;Lee, Sangwoo;Shin, Taeksoo;Kim, Kwangyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.5-13
    • /
    • 2008
  • In this study, It was carried out to evaluate the feasibility of recycled crushed concrete as aggregate used cement mortar replace sand and to investigate engineering properties of recycled aggregate for hazardous waste solidification. The compressive strength of cement mortar replaced 5-15% (wt.) recycled aggregate was over $163kgf/cm^2$ which is the standard of first grade concrete block class C. And cement mortar was examined to evaluate the stability by leaching test. Cu, Cd, Pb, Cr, and As as the heavy metals were proved very stable but mercury (Hg) was leached high concentration because it was simply tied to the cement surface. We investigated the crystal structures of cement mortar and they had shown the peaks of $Ca(OH)_2$, ettringite, and CSH (calcium silicate hydrate). As the result, the longer curing time, the higher CSH peak that means to increase compressive strength and the cement mortar was more stable. Therefore it was shown that it may be possible to apply hazardous waste solidification using recycled aggregate, fly ash and sewage sludge ash.

  • PDF

The Experimental Study on the Resistance Forces and the Failure Temperatures of H-Shaped Steel Compressive Members by Elevated Temperatures (온도상승에 의한 H-형강 압축재의 내력과 파괴온도에 관한 실험적 연구)

  • Choi, Hyun Sik;Kang, Seong Deok;Kim, Jae Eok
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The object of this paper is to perform the experiments to investigate the relationship of the resistance forces and the failure temperatures on the failure behaviors of H-shaped steel compressive members. H-shaped members(SS400) were used for the test models and the tests for the elevated temperatures were performed by ISO 834 in FILK(Fire Insurers Laboratories of Korea). The local, overall buckling stresses and a yielding stresses for the failure temperatures were compared with the compressive stresses for the loading forces of test models, the yielding strength and elastic modulus reduction factor of the steel at a high temperature were based on the criteria of the EC3(Eurocode 3) Part1.2(1993). The slenderness ratio was fixed by 45.4 and the compressive forces corresponded with 50%, 70% and 80% of the yielding forces at the normal temperatures were chosen for the loading forces of the test models. The failure temperatures of the test models were investigated under three kinds of loading conditions. It was known that the resistance forces have come close to the yielding forces, not the elastic buckling loads evaluated by EC3 at the failure temperatures obtained from the tests which are related to the failure temperatures and the loading stresses.

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

Performance Evaluation of Carbon-Reducing Soil Pavement using Inorganic Binder (무기계 바인더를 이용한 탄소저감형 흙포장의 성능평가)

  • Yoo, Ji Hyeung;Kawk, Gi Bong;Kim, Dae Sung
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • PURPOSES : This study intends to develop an inorganic soil pavement material using industrial by-products and to evaluate its applicability as a road pavement material. METHODS : In this study, a compressive strength experiment was conducted based on the NaOH solution molarity and water glass content to understand the strength properties of the soil pavement material according to the mixing ratio of alkali activator. In addition, the strength characteristic of the inorganic soil pavement material was analyzed based on the binder content. The performance of the soil pavement was evaluated by conducing an accelerated pavement test and a falling weight deflectometer (FWD) test. RESULTS : As a result of the soil pavement material test based on the mixture ratio of alkali activator, it was identified that the activator that mixed a 10 M NaOH solution to water glass in a 5:5 ratio is appropriate. As a result of the inorganic soil pavement materials test based on the binder content, the strength development increased sharply when the amount of added binder was over 300 kg; this level of binder content satisfied 28 days of 18 MPa of compression strength, which is the standard for existing soil pavement design. According to the measured results of the FWD test, the dynamic k-value did not show a significant difference before or after the accelerated pavement testing. Furthermore, the effective modulus decreased by approximately 50%, compared with the initial effective modulus for pedestrian pavement. CONCLUSIONS : Based on these results, inorganic soil pavement can be applied by changing the mixture proportions according to the use of the pavement, and can be utilized as road pavement from light load roads to access roads.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.