• Title/Summary/Keyword: compressive strength estimation

Search Result 287, Processing Time 0.025 seconds

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

Charts for estimating rock mass shear strength parameters

  • Wan, Ling;Wei, Zuoan;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2016
  • Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

An Experimental Study on Fatigue Behavior in Welded SM45C Steel Rod (SM45C 환봉 용접재의 피로거동에 관한 실험적 연구)

  • Lee, Yong-Bok;Jung, Jae-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.519-525
    • /
    • 2008
  • For this study, SM45C steel rods using generally for power transmission shafts and machine components was selected and welded by butt-GMAW method. And then it was studied about estimation of fatigue strength and the region of infinite life by Haigh diagram using Goodman's equation. Fatigue strength in weld zone presents highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. This result agrees with distribution of hardness in weld zone. Fatigue strength in base metal zone presents highly compared with weld zone in low cycles between $10^4$ cycles and $10^6$cycles, but it presents the lowest fatigue strength on the order of heat affected zone in the vicinity of $10^6$cycles. It is the result that the first high compressive residual stress distributed by drawing process of the steel rods is released and the base metal is softened by alternating stresses. The region of infinite life by Haigh diagram presents highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. From this results, it is demanded that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected in the region of the lowest infinite life of heat affected zone.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

Evaluation of Spalling Characteristics and Fire Resistance Fiber-Entrained Mixed Cement Concrete at Ultra-High Temperatures (섬유가 혼입된 혼합시멘트 콘크리트의 초고온에서의 폭렬특성 및 내화성능 평가)

  • Jun-Hwan Oh;Ju-Hyun Cheon;Man-Soo Lee;Sung-Won Yoo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.23-29
    • /
    • 2023
  • The goal of this study is to evaluate the bursting characteristics and fire resistance performance of mixed cement concrete containing fibers at very high temperatures. For this purpose, FA-based, Slag-based, and each mix according to the amount of fiber mixed were heated to room temperature, 150℃, 300℃, 600℃, and 900℃, and then the burst shape, compressive strength, and elastic modulus were measured and evaluated. As a result of the experiment, it was found that relatively more surface damage occurred in FA-based specimens when heated at ultra-high temperatures than in slag-based specimens, and there was a difference between the mix without fibers and the mix with fibers when heated at ultra-high temperatures, that is, at 900℃. In the mix without fibers, a decrease in strength of more than 5% occurred. In addition, the elastic modulus also showed the same phenomenon as the compressive strength, and in particular, the decrease in elastic modulus was found to be greater than the amount of decrease in compressive strength. Meanwhile, estimation equations for compressive strength and elastic modulus according to heating temperature were statistically proposed.

A Study on the Characteristics of High Tensile Strength Steel(SM570) Plates in Compression Members (고장력(SM570)강재의 압축재 특성에 관한 연구)

  • Im, Sung-Woo;Ko, Sang-Ki;Chang, In-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.223-232
    • /
    • 2001
  • Column tests subjected to compressive loading were carried out for the estimation of compression buckling strength of steel plate SM570 in beam-column member under high axial load. It was found that the maximum strength of column member was determined by local buckling when satisfied with a limit of width-to-thickness ratio in current steel structure design specifications, but decreased suddenly by local buckling before the maximum strength in case of not satisfying with that ratio. Also, the compression buckling strength of SM570 plate was higher than the design specification value of 4$4.1tonf/cm^2$.

  • PDF

A Study on Mechanical Characteristics of Masonry Structure Constructed by Clay Brick with Lime Mortar (점토벽돌과 석회모르타르를 사용한 조적구조의 역학적 특성에 관한 연구)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Clay bricks with lime mortar are recently popular since they are eco- and environment-friendly construction material being capable of air flow and moisture movement. However, there is little study on those of clay brick an lime mortar while relatively many researches on the structural characteristics of concrete bricks with cement mortar are available in Korea. Furthermore, the current Korean Building Code of masonry structures was established on the base of the Foreign Codes which does not reflect Korean masonry construction circumstance, such as material characteristics and section properties. To overcome these problems, experiments of masonry structures constructed using clay bricks with lime mortar were carried out to evaluate their structural characteristics such as, prism compressive strength, adhesive strength and diagonal tensile(shear) strength. Also this research compares the mechanical characteristics between clay bricks with lime mortar and concrete bricks with cement mortar to provide information that will be used for revisions of the domestic standards for masonry structures. As masonry structures constructed with clay bricks and lime mortar show different aspects over the ones constructed with concrete bricks and cement mortar, we suggest estimation equation of prism compressive strength and diagonal tensile strength on masonry structures constructed with clay bricks and lime mortar.

A Study on the Estimation of Optimal Unit Content of Binder for the Soil Stabilizer Using the Recycled Resource in DMM (심층혼합공법에서 순환자원을 활용한 지반안정재의 최적 단위결합재량 산정에 관한 연구)

  • Seo, Se-Gwan;Lee, Khang-Soo;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.37-44
    • /
    • 2019
  • The compressive strength of the soil stabilizer in the deep mixing method (DMM) depends on kinds of soil, particle size distribution, and water content. Because of this, Laboratory test has to perform to estimate the unit weight of binder to confirm the satisfaction of the design strength. In this study, uniaxial compression strength was measured by mixing the soil stabilizers developed in the previous study with clay in Busan, Yeosu, and Incheon area. And the strength enhancement effect was evaluated comparing with blast furnace slag cement (BFSC). Also, the relationship between the unit content of binder and uniaxial compressive strength was investigated in order to easily calculate the unit weight of binder required to ensure the stability of the ground at the field. As the results of the analysis, the relationship between the unit content of binder and the uniaxial compressive strength are ${\gamma}_B=(108.93+0.0284q_u){\pm}35$ when W/B is 70%, and ${\gamma}_B=(122.93+0.0270q_u){\pm}40$ when W/B is 80%.

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.

An Experimental Study on the Estimation of Compressive Strength and the Physical Properties of Recycled Aggregate Concrete of Fixed Slump (슬럼프 고정 순환골재콘크리트의 물리적 특성 및 압축강도 추정에 관한 실험적 연구)

  • Kim, Sang-Heon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • This study was a basic research for actual production of recycled aggregate concrete, and experiments were carried out on the change of water cement ratio and physical properties of recycled aggregate concrete with fixed slump. Results were as follows. Concrete using recycled aggregate were required increased water to maintain the target slump, and the recycled fine aggregate are necessary more increased water more than the recycled coarse aggregate. The replacement ratio of recycled fine aggregate be less than 60%, would be possible to obtain the air content volume that did not deviate from the concrete quality specification. The compressive strength of concrete using recycled aggregate decreased with increasing the replacement of recycled aggregate, and compressive strength decreased by 25% when 100% recycled fine aggregate were replaced. As a result of analyzing the correlation of compressive strength according to the mixing factors of concrete, it was found that replacement of recycled fine aggregate> water cement ratio> air content volume were influenced in order.