• Title/Summary/Keyword: compressive strength equation

Search Result 359, Processing Time 0.306 seconds

Drying Shrinkage and Durability of Concrete Using Fine River Sand (하천세사를 사용한 콘크리트의 건조수축 및 내구성)

  • Bae, Suho;Jeon, Juntai;Kwon, Soonoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • The purpose of this research is to estimate the drying shrinkage and durability of concrete using the fine river sand to utilize it actively as an alternative aggregate for concrete. For this purpose, the fine river sand samples were collected at the mid and down stream of main stream of Nakdong-River, and then the concrete specimens using the fine river sand were made according to strength level. After obtaining relation equation between compressive strength and cement-water ratio from the mix experiment result, the concrete specimens using different fine river sand were made for the specified concrete strength of 35MPa, and then their drying shrinkage and durability such as the resistance to freeze and thaw and carbonation were evaluated. It was observed from the test result that the durability of concrete using fine river sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine river sand with small fineness was comparatively larger than that of concrete using reference sand.

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures (복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구)

  • Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.139-145
    • /
    • 2019
  • This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.

Estimation of Flowability and Strength in Controlled Low Strength Material Using Multiple Regression Analysis (다중회귀분석을 이용한 CLSM의 유동성 및 강도 특성 예측)

  • Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.65-75
    • /
    • 2017
  • Flowability and strength with curing time of controlled low-strength material (CLSM) are required differently according to the construction purpose. In this paper, the flowability and strength were estimated from the mixing ratio of CLSM using multiple regression analysis to design the CLSM. The flow values and strength at 12 hrs and 7days were measured in accordance with the mixing ratio of CLSM which consists of 7 different materials, such as CSA expansive agent, ordinary Portland cement, fly ash, sand, silt, water, and accelerator. The multiple regression was performed with the proportions of each material of CLSM as independent variables and the measured properties as dependent variables using SPSS Statistics 23 which is a statistical analysis program. The regression coefficients were estimated from the first to third order equation models for the materials. From the results, the third order model for the flow values and the first order models for 12hrs and 7days strength are the most appropriate models. This study suggests that the mixing ratio required for constructions may be effectively estimated from the regression models about the characteristics of CLSM, before performing experimental tests.

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF

An Experimental Study on the Shear Resistance of Dowel Bars (장부철근의 전단저항에 대한 실험적 연구)

  • 신장호
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.216-223
    • /
    • 1995
  • This research is aimed to investigate the influence of the structural parameters on dowel action of reinforcing bars in reinforced concrete members. I~ollowing the previous research, $^{(3.6)}$ a total of forty two specimens were tested to scrutinize the dowel action of reinforcing bars. Concrete cover, reinforcing bar size and bar distance were taken as main test variables for constant compressive strength of concrete. ]+om the test results, the structural behavior of all specimens was almost linear up to failure load. It is seen that dowel force increases as concrete cover increases. Reinforcing bar size and bar distance hardly affects dowel force. It is found that the dowel forces obtained by this experimental research is relatively close to that of regression analysis results and White's equation.

Basic Experimental Properties of Concrete using Waste Concrete as Aggregate (骨材로써 廢콘크리트를 사용한 콘크리트의 基本的인 實驗 特性)

  • 구봉근;나재웅;신재인;박재성
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.16-24
    • /
    • 2001
  • In this study, various mechanical properties of concretes employing waste concrete as aggregate were examined. These concretes were obtained by mixing seven types of aggregate for different ratios. So, the experimental variables are the kinds of aggregates (some different aggregate compositions) and W/C ratio (0.40, 0.45, 0.50). From experimental results, the reliable regression analysis equations between compressive strength and various experimental data for recycled aggregate concrete are presented. Consequently, this study was accomplished to investigate basic engineering properties of recycled aggregate concrete using waste concrete.

  • PDF

Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology (FTM과 RSM을 이용한 후방 압출 금형 설계)

  • Hur Kwan Do;Yeo Hong Tae;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

Analytical model for transfer length prediction of 13 mm prestressing strand

  • Marti-Vargas, J.R.;Arbelaez, C.A.;Serna-Ros, P.;Navarro-Gregori, J.;Pallares-Rubio, L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.211-229
    • /
    • 2007
  • An experimental investigation to determine the transfer length of a seven-wire prestressing strand in different concretes is presented in this paper. A testing technique based on the analysis of bond behaviour by means of measuring the force supported by the prestressing strand on a series of specimens with different embedment lengths has been used. An analytical bond model to calculate the transfer length from an inelastic bond stress distribution along the transfer length has been obtained. A relationship between the plastic bond stress for transfer length and the concrete compressive strength at the time of prestress transfer has been found. An equation to predict the average and both the lower bound and the upper bound values of transfer length is proposed. The experimental results have not only been compared with the theoretical prediction from proposed equations in the literature, but also with experimental results obtained by several researchers.