• Title/Summary/Keyword: compressive performance

Search Result 1,796, Processing Time 0.028 seconds

The Study on High Performance of Offshore Concrete Using Crushed Stone Fines (쇄석미분말을 사용한 해양콘크리트의 고성능화에 관한 연구)

  • Chang, Chun-Ho;Jung, Yong-Wook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of high performance concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, $10{\sim}15%$ of compressive strength is decreased and flowability of high performance concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, $4^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition In the meantime, durability of high performance concrete is excellent, having over 100% of good relative dynamic modulus of elasticity due to fineness of formation mused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, It can be said that the usage of crushed stone fines can control the strength of high performance concrete by replacement and reduce heat of hydration.

  • PDF

An Experimental Study on the Flexural Stiffness and Plastic Hinge Ratation Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강성 및 소성힌지의 회전능력에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.93-100
    • /
    • 1998
  • This paper presents a study on the flexural stiffness, plastic hinge length and plastic hinge rotation capacity of reinforced high performance concrete beams. 15 beams with different strength of concrete, reinforcement ratio and the pattern of loadings were tested. From the test results of reinforced normal strength concrete beams and reinforced high performance concrete beams with the concrete which has cylinder compressive strength of 700kg/${cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. It is found that an extreme fiber concrete compressive strain of ${\varepsilon}_{cu}=0.0047$ may be used in ultimate curvature computations of reinforced high performance concrete beams. An empirical equation is proposed to estimate the effective moment of inertia. length and rotation capacity of plastic hinge of simply supported reinforced high performance concrete beams. The estimated deflections using this equation agree well with the experimental values.

Setting Time, Strength and Rebound Rate of Shotcrete according In Accelerators (급결제에 따른 숏크리트의 응결, 강도 및 리바운드율)

  • Lee Seong-Haeng;Kim Yong-Ha;Hahm Hyung-Gil;Kim Kwan-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.427-434
    • /
    • 2005
  • An experimental investigation was carried out in order to verify the compressive strength, flexural strength, equivalent bending strength, rebound rate of shotcrete according to silicate accelerator, aluminate accelerator, cement mineral accelerator respectively and to especially evaluate the performance of shotcrete using cement mineral accelerator for high quality. The test result of compressive strength was showed that all accelerators were satisfied the required test value for each age, for the requirement of having the $75\%$ or higher compressive strength ratio to plain concretes at 28 days, cement mineral accelerator with $87\%$ compressive strength ratio was only satisfied. In flexural strength test, cement mineral accelerator was satisfied the flexural strength requirement in steel fiber reinforced shotcrete for each age. Aluminate type was conformed to the requirement for 28 days, but not at 1 day, silicate type was failed to satisfy standard requirement. Rebound rate was measured between $11{\~}19\%$ and cement mineral accelerator was showed comparatively lower rebound rate. Based on the test results, cement mineral accelerator exhibited excellent strength improvement and lower rebound rate compared to the conventional accelerator, its result is showed the possibility of making high performance shotcrete.

Material Properties Evaluation of Cement Mortar Mixed with Organic/Inorganic Combined Water-repellent (유/무기 복합 발수제를 혼입한 모르타르의 재료특성 평가)

  • Kim, Wan-Su;Yoon, Chang-Bok;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.50-58
    • /
    • 2020
  • When the concrete surface layer is damaged, The method of impregnating the concrete surface with a water repellent cannot secure the expected durability. Recently, various waterproofing and water-repellent materials were mixed into concrete or mortar to secure water repellency even inside cracks, but compressive strength was greatly reduced. In order to overcome the decrease in compressive strength, there has not yet been a study using the merits of organic and inorganic materials at the same time, so in this study, the physical properties and water repellency performance were evaluated by mixing an organic/inorganic composite water repellent appropriately mixed with an organic and inorganic material into the mortar. When mixed with organic/inorganic water repellent, the flow and air content were reduced by about 10% and 50% compared to the Liquid specimen. In the case of the P6L1 specimen, it was confirmed that the compressive strength decreased by about 3.5% compared to the non-mixed mortar at 39.5 MPa, the same as the existing water repellent, Powder. Water-repellent performance The organic-inorganic composite water repellent mixture specimen confirmed higher water repellency than the existing water repellent mixture powder, and the chloride penetration resistance evaluation result showed that the organic-inorganic composite water repellent mixture specimen reduced the passing charge by about 45% compared to the non-mixed mortar. In summary, it is judged that the P5L1 organic/inorganic composite water repellent mixed with a powder water repellent and a liquid water repellent in a ratio of 5:1 is the most reasonable to prevent the decrease in compressive strength and secure water repellency.

Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration (염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사)

  • Yunsuk Kang;Gwihwan Lim;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.381-390
    • /
    • 2023
  • In this study, the mechanical performance of concrete exposed to chloride ion penetration was investigated. And a compressive stress-strain model was presented. CaCl2 solution was added when mixing concrete to simulate long-term chloride ion penetration, and the concentration of chlorine ions was set to 0, 1, 2, and 4 % based on the weight of the binder. To investigate the compressive stress-strain curve after the peak stress of concrete, the compressive strength was measured by displacement control. When the chlorine ion concentration was 1 %, peak stress increased, but when the chlorine ion concentration was 2 % or more, peak stress decreased. In the case of peak strain, no trend according to chloride ion concentration was observed at 7 days. At 28 days, peak strain decreased as the chloride ion concentration increased. A compressive stress-strain curve model based on the Popovics model was presented using changes in peak stress and peak strain at 28 days. Microstructure analyses were performed to investigate the cause of the decrease in mechanical performance as the concentration of chlorine ions increased. It was confirmed that as the concentration of chlorine ion increased, Friedel's salt increased and portlandite decreased.

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

Performance assessments of feature vectors and classification algorithms for amphibian sound classification (양서류 울음 소리 식별을 위한 특징 벡터 및 인식 알고리즘 성능 분석)

  • Park, Sangwook;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.401-406
    • /
    • 2017
  • This paper presents the performance assessment of several key algorithms conducted for amphibian species sound classification. Firstly, 9 target species including endangered species are defined and a database of their sounds is built. For performance assessment, three feature vectors such as MFCC (Mel Frequency Cepstral Coefficient), RCGCC (Robust Compressive Gammachirp filterbank Cepstral Coefficient), and SPCC (Subspace Projection Cepstral Coefficient), and three classifiers such as GMM(Gaussian Mixture Model), SVM(Support Vector Machine), DBN-DNN(Deep Belief Network - Deep Neural Network) are considered. In addition, i-vector based classification system which is widely used for speaker recognition, is used to assess for this task. Experimental results indicate that, SPCC-SVM achieved the best performance with 98.81 % while other methods also attained good performance with above 90 %.

Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속재 변화에 따른 고성능 콘크리트의 역학적 특성)

  • Han, Cheon-Goo;Jung, Duk-Woo;Jin, En-Hao
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2003
  • Recently, as concrete structure becomes high rise and large scaled tendency, demands for high performance concrete such as high strength, high fluidity and high durability has been increased. Even though high performance concrete performs high strength, workability and durability, compared to with those of normal concrete, it is more brittle than normal concrete. Accordingly, this paper is intended to improve toughness and compressive strength through investigating the mechanical properties of the high performance concrete confined with metal lath, glass fiber and carbon fiber laterally in the case of 30% and 40% of W/B. According to the results, the compressive strength increases in order of metal lath, carbon fiber and glass fiber. Considering strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. Elastic modulus increases slightly in case of confined concrete, like the compressing strength.

A Study on Compressive Strength of Built-up H Shaped Columns Fabricated with HSA800 High Performance Steels (건축구조용 고성능강(HSA800) 용접 H형단면 기둥의 압축강도에 관한 연구)

  • Kim, Tae Soo;Lee, Myung Jae;Oh, Young Suk;Lee, Kang Min;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.627-636
    • /
    • 2012
  • Recently, high performance(strength) steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper is a series of basic study for the design specification of structural members using high performance steel, material properties of high performance rolled steel building structures; material properties of HSA800 steel was compared with the requirements of Korean Standards(KS) for HSA800. Welded H-shape stub columns with variables of width-to-thickness ratios are planned in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio and uniaxial compressive tests are carried out. In addition, the buckling behaviors of stub columns obtained finite element analysis were compared with those of test results.