• Title/Summary/Keyword: compressive force

Search Result 608, Processing Time 0.027 seconds

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근 위치가 다른 철근콘크리트 부재의 거동 분석)

  • Lee, Jung-Yoon;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.685-692
    • /
    • 2007
  • When the shear force governs the response of an RC element, as in the case of a low-rise shear wall, the effect of shear on the element's response is thought to be responsible for the 'pinching effect' in the hysteretic loops. However, it was recently shown that this undesirable pinching effect can be eliminated in the hysteretic load-deformation curves of a shear-dominant element if the steel grid orientation is properly aligned in the direction of the applied principal stresses. In this paper, the presence and absence of the pinching mechanism in the hysteretic loops of the shear stress-strain curves of RC elements was explained rationally using a compatibility aided truss model. The analytical results indicate that the pinching effect of the RC elements is strongly related to the direction of the steel arrangement. The area of the energy dissertation does not increase proportionally to the difference between the direction of the principal compressive stress and the direction of the steel arrangement.

A Study on the Stiffness of a 13degree-type Impact Tester for Aluminum Wheels (자동차용 휠(wheel)의 충격해석 신뢰도 향상을 위한 13도법 충격시험기의 강성 연구)

  • Ko, Kil-Ju;Kim, Man-Seob;Song, Hyun-Woo;Yang, Chang-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.12-19
    • /
    • 2006
  • It is positively necessary to study on the stiffness of a 13degree-type impact tester in order to improve the fracture prediction of impact testing in wheels using FE(finite-element) analysis. The 13degree-type impact tester consists of an impact striker, a wheel fixer, a steel plate, and four cylindrical rubbers. Important parts of the tester are the steel plate and four cylindrical rubbers which play a role of absorbing impact energy during impact testing. Because of these buffers, the RF(reaction force) variation of the lower part in the 13degree-type impact tester showed the tendency like a damped harmony oscillation during impact testing. In order to investigate the stiffness of a 13degree-type impact tester, this work measured each stiffness of a steel plate and cylindrical rubbers. The stiffness of a cylindrical rubber was measured using a compressive tester. On the other hand, the stiffness of a steel plate was predicted by simulating experimental method using FE analysis.

The Change of Sagittal Alignment of the Lumbar Spine after Dynesys Stabilization and Proposal of a Refinement

  • Park, Won Man;Kim, Chi Heon;Kim, Yoon Hyuk;Chung, Chun Kee;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • Objective : $Dynesys^{(R)}$ is one of the pedicle-based dynamic lumbar stabilization systems and good clinical outcome has been reported. However, the cylindrical spacer between the heads of the screws undergoes deformation during assembly of the system. The pre-strain probably change the angle of instrumented spine with time and oblique-shaped spacer may reduce the pre-strain. We analyzed patients with single-level stabilization with $Dynesys^{(R)}$ and simulated oblique-shaped spacer with finite element (FE) model analysis. Methods : Consecutive 14 patients, who underwent surgery for single-level lumbar spinal stenosis and were followed-up more than 24 months (M : F=6 : 8; age, $58.7{\pm}8.0$ years), were analyzed. Lumbar lordosis and segmental angle at the index level were compared between preoperation and postoperative month 24. The von Mises stresses on the obliquely-cut spacer ($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$, and $30^{\circ}$) were calculated under the compressive force of 400 N and 10 Nm of moment with validated FE model of the L4-5 spinal motion segment with segmental angle of $16^{\circ}$. Results : Lumbar lordosis was not changed, while segmental angle was changed significantly from $-8.1{\pm}7.2^{\circ}$ to $-5.9{\pm}6.7^{\circ}$ (p<0.01) at postoperative month 24. The maximum von Mises stresses were markedly decreased with increased angle of the spacer up to $20^{\circ}$. The stress on the spacer was uneven with cylindrical spacer but it became even with the $15^{\circ}$ oblique spacer. Conclusion : The decreased segmental lordosis may be partially related to the pre-strain of Dynesys. Further clinical and biomechanical studies are required for relevant use of the system.

Stability Analysis of the Spillway Tunnel Located on the Granite Region Including Fault Fractured Zone (단층파쇄대를 포함한 화강암지역의 여수로 터널 안정성 분석)

  • Han, Kong-Chang;Ryu, Dong-Woo;Kim, Sun-Ki;Bae, Ki-Chung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.58-68
    • /
    • 2008
  • The construction of an emergency spillway of Imha Dam is being in progress on the granite region including fault fractured zone. Considering that this tunnel is being excavated in three paralled rows, the pillar width between each tunnel and the face distance between each tunnel face were evaluated. The Influence of the fault fractured zone for the tunnel stability was investigated by numerical modelling in 3D. Various geophysical investigations and rock engineering field tests were carried out for these purposes. It was suitable that the second tunnel would be excavated in advance, maintaining the face distance between each tunnel face of minimum 25 m. The results of numerical modelling showed that the roof displacement and the convergence of the second tunnel were insignificant, and the maximum bending compressive stress, the maximum shear stress of shotcrete and the maximum axial force of rockbolt were also insignificant. Therefore, it was estimated that the stability of the spillway tunnel was ensured.

Development of Nonlinear Analysis Technic to Determine the Ultimate Load in Electric Transmission Tower (송전철탑의 극한하중 도출을 위한 비선형해석 기법)

  • Kim, Woo Bum;Choi, Byong Jeong;Ahn, Jin Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The current design practice of electric transmission tower is based on the allowable stress design. However, it is difficult to find the cause behind a transmission tower's collapse by the above design approach as the collapse is caused by large secondary deformations based on and geometrical nonlinear behavior.influence factor for the nonlinear behavior is mainly residual stress, initial imperfection and end restraints on members. In this study, the necessity of the nonlinear analysis is examined through the comparison between elastic ana the nonlinear analysis, a new analytical method (equivalent nonlinear analysis technique) is proposed. To confirm the reliability of the proposed method, the computed ultimate load of the transmission tower using the method was compared with that of the nonlinear finite element analysis. Effects of parameters, such as compressive force and the slenderness ratio of the brace member on the main post member, were investigated. The effective member length according to influential parameters was formulated in table form for practical purposes.

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF

The Stress Concentration Caused by Pin-hole in Femur after Computer-navigated Total Knee Arthroplasty: A Finite Element Analysis (컴퓨터 네비게이션을 이용한 슬관절 전치환술에서 핀 홀에 의한 응력 집중: 유한요소해석)

  • Park, Hyung-Kyun;Kim, Yoon-Hyuk;Park, Won-Man;Kim, Kyung-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.451-456
    • /
    • 2008
  • Total knee arthroplasty(TKA) using computer-assisted navigation has been increased in order to improve the accuracy of femoral and tibial components implantation. Recently, a few clinical studies have reported on the femoral stress fracture after TKA using computer-assisted navigation. The purpose of this study is to investigate the stress concentration around the femoral pin-hole for different pin-hole diameter, the modes of pin penetration by finite element analysis to understand the effects of pin-hole parameters on femoral stress fracture risk. A three-dimensional finite element model of a male femur was reconstructed from 1 mm thick computed tomography(CT) images. The bone was rigidly fixed to a 25 mm above the distal end and 1500 N of axial compressive force and 12 Nm of axial torsion were applied at the femoral head. For all cases, transcortical pin penetration mode showed the highest stress fracture risk and unicortical pin penetration mode showed the lowest stress concentration. Pin-hole diameter increased the stress concentration, but pin number did not increase the stress dramatically. The results of this study provided a biomechanical guideline for pin-hole fracture risk of the computer navigated TKA.

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

Mix Design and Physical Properties of Concrete Used in Seongdeok Multi-purpose Dam (성덕 다목적댐 콘크리트의 배합설계 및 역학적 특성)

  • Kim, Jin-Keun;Jang, Bong-Seok;Ha, Jae-Dam;Ryu, Jong-Hyun;Go, Suk-Woo;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.517-520
    • /
    • 2008
  • Gravity dam use self weight to stand external force like hydraulic pressure. In general, gravity dam concrete is divided into internal and external concrete. Seongdeok dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. And upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. In this study, we examined the mix design of internal/external concrete and physical properties(compressive strength, adiabatic temperature rise). And we also performed laboratory tests to verify exothermic properties. Lastly, we measured the hydration heat and thermal stress of upstream cofferdam.

  • PDF