• Title/Summary/Keyword: compressive force

Search Result 608, Processing Time 0.042 seconds

Prediction of Equivalent Stress Block Parameters for High Strength Concrete (고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구)

  • Lee, Do Hyung;Jeon, Jeongmoon;Jeong, Minchul;Kong, Jungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.227-234
    • /
    • 2011
  • Recently, a high strength concrete of more than 40 MPa has been increasingly used in practice. However, use of the high strength concrete may influence on design parameters, particularly stress distribution. This is very true since the current everyday practice employs equivalent rectangular stress distribution that is derived from normal strength concrete. Subsequently, the stress distribution seems to be reevaluated and then a new distribution with new parameters needs to be suggested for the high strength concrete. For this purpose, linear and multiple regression analyses have been carried out in term of using experimental data for the high strength concrete of 40 to 80 MPa available in literatures. Accordingly, new parameters associated with the stress distribution have been proposed and employed for the design of flexural and compressive members. Comparative design examples indicate that designs with new parameters reduce section dimensions compared to those with the current code parameters for concrete strengths of 40 to 70 MPa. In particular, for compressive members, design with new parameters exhibit conservative compressive force compared to those with the current code parameters.

Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP (일방향 탄소섬유강화 플라스틱 복합재 적층구조의 충격 후 압축강도 시험 및 유한요소해석)

  • Ha, Jae-Seok
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.321-327
    • /
    • 2016
  • In this study, tests and finite element analyses were performed regarding compression after impact strength for laminated composite structures of unidirectional carbon fiber reinforced plastic widely used in structural materials. Two lay-up sequences of composite laminates were selected as test specimens and four impact energy conditions were applied respectively. Impact and compressive strength tests were conducted in accordance with ASTM standards. Impact damages in test specimens were analyzed by using non-destructive inspection method of C-Scan, and compression after impact strengths were calculated with compressive test results. Progressive failure analysis method that can progressively simulate damages and fractures of fiber/matrix/lamina/laminate level was used for impact and compressive strength analyses. All analysis results including contact force, deflection, impact damages, compressive strengths, etc. were compared to test results, and the validity of analysis method was verified.

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material (자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향)

  • Ki, Woo-Tae;Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyeong-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.

Effects of Extracts from Cnidium officinale and Angelica sinensis on Bone Fusion in Mice with Femoral Fracture (당귀천궁복합물이 대퇴골 골절 동물모델에서 골 유합에 미치는 영향)

  • Sang Woo Kim;Min-Seok Oh
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • Objectives The purpose of this study is to evaluate the fracture healing effect of extracts from Cnidium officinale and Angelica sinensis (CO/AS) in mice with femoral fracture. Methods C57BL/6 mice were randomly divided into normal, control (phospate-bufferd saline), positive control (tramadol), CO/AS extract 40 mg/kg and 80 mg/kg. By using Collier's method, all groups except normal group went through femoral fracture. Aspartate aminotransferase (AST), alanine transferase (ALT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and creatinine were measured to evaluate the safety of CO/AS. Hematoxylin & eosin, Safranin O staining, x-ray, tensile and compressive force were conducted to assess the effect of CO/AS on fracture. Results The liver function test showed AST, ALT and LDH in CO/AS at 14th and 28th days were not significantly different compared with control group. The renal function test showed BUN in CO/AS at 14th days and BUN and creatinine in CO/AS at 28th days were significantly decreased compared with control group. The morphological & histological analysis and x-ray showed that CO/AS promoted cartilage and callus formation process compared with control group. The tensile and compressive forces test showed tensile in CO/AS 40 mg/kg and tensile & compressive forces in CO/AS 80 mg/kg were significantly increased compared with control group. Conclusions CO/AS extract showed the possibility that it promotes early fracture union and increases bone tensile and compressive strength, while does not have hepatotoxicity. In conclusion, CO/AS has a potential to promote healing of bone fracture and this study warranted the clinical usage of CO/AS at bone fracture.

Effects of Axial Force on Deformation Capacity of Steel Encased Reinforced Concrete Beam-Columns (매립형 SRC 기둥재의 변형성능에 대한 축력의 영향)

  • Chung, Jin-An;Yang, Il-Seung;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.251-259
    • /
    • 2003
  • In this paper, an analytical approach hwas been conductsed to clarify the relationships between the axial force and the deformation capacity of steel- encased reinforced- concrete beam-columns. The analytical model was defined as a cantilever. Several parameters influencing the inelastic performance of the beam-columns were selected, as follows: including encased steel area ratios, and sectional shapes of the encased steel, material strengths, and shear-span- to-depth ratios. The Analytical results of the analysis showed that the axial force had to have a maximum limit to ensure the stable behavior of a steel- encased reinforced- concrete beam-column when it was subjected to both axial and repeated lateral loading under a constant rotation angle amplitude. The maximum axial force of the beam-column to be resisted under cyclic lateral loading was defined as the stable-limit axial force to ensure the required rotation angle amplitude. The Analytical results of the analysis indicate that the stable-limit axial load ratio increases as the steel strength increases or as the compressive strength of the concrete decreases. The stable-limit axial load ratio decreases as the encased steel ' s sectional area increases in the case of a 1-shaped sections and it is almost not influenced by the steel sectional area in the case of a cross-shaped section.

Resistance of Web-Separated Diagrid Nodes Subjected to Cyclic Loading (반복하중에 대한 웨브전이형 다이아그리드 노드의 구조적 특성)

  • Kim, Young Ju;Jung, In Yong;Ju, Young K.;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.257-266
    • /
    • 2009
  • The results of the analysis of the structural behavior of diagrid nodes that were subjected to cyclic loads such as wind and earthquakes was not fully understood due to difficulties in considering the welding type. In this study, diagrid nodes were tested to determine their behavior when they are subjected to seismic or wind loads. Five specimens were designed and fabricated. The corresponding test parameters were the welding type for each point and the length of the overlap of the side stiffener and the brace web. Tensile force was applied to one diagrid brace member, and compression force was applied to the other diagrid brace member. Cyclic loading was applied until the failure. The test showed that failures are due to axial stress from axial force and the additional bending moment of the two combined axial forces that have different directions. Tensile failure was observed from the tensile force, and local buckling was observed from the compressive force at the flange of the brace member. In addition, the welding type and the length overlap affected the initial stiffness, the yielding stress, and the energy absorption of the diagrid node.

The effects of continuous and intermittent compressive pressure on alkaline phosphatase activity of Periodontal Ligament cells (지속적 및 간헐적 가압력이 치주인대 배양세포의 Alkaline Phosphatase 활성도에 미치는 영향)

  • Kwon, Suk-Yee;Bae, Seong-Min;Kyung, Hee-Moon;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.599-605
    • /
    • 1997
  • The propose of this study was to evaluate the effect of cellular activity on PDL cells dependent on intermittent and continuous compressive force by determining the alkaline phosphatase activity. An intermittent and continuous compressive forces were applied on PDL cells at the confluent stage. The alkaline phosphatase activity was measured on control and experimental groups every 24, 48, 72hours. The experimental group were consist of continuous and intermittent compressive group which were compressed by $300g/cm^2$ of diaphram pump. The intermittent compressive group was connected by timer which was worked on 10 minutes and off 10minutes. The results were as follows ; 1. The alkaline phosphatase activity of intermittent compressive group was lower than control group at 24 hours(P<0.05). 2. The alkaline phosphatase activity between each groups showed no significant differences at 48hours. 3. The alkaline phosphatase activity of continuous compresssive group was significantly higher than control group at 72 hours(P<0.01).

  • PDF

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

An Experimental Study on the Shear Resistance of Dowel Bars (장부철근의 전단저항에 대한 실험적 연구)

  • 신장호
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.216-223
    • /
    • 1995
  • This research is aimed to investigate the influence of the structural parameters on dowel action of reinforcing bars in reinforced concrete members. I~ollowing the previous research, $^{(3.6)}$ a total of forty two specimens were tested to scrutinize the dowel action of reinforcing bars. Concrete cover, reinforcing bar size and bar distance were taken as main test variables for constant compressive strength of concrete. ]+om the test results, the structural behavior of all specimens was almost linear up to failure load. It is seen that dowel force increases as concrete cover increases. Reinforcing bar size and bar distance hardly affects dowel force. It is found that the dowel forces obtained by this experimental research is relatively close to that of regression analysis results and White's equation.