• Title/Summary/Keyword: compressive and tensile strengths

Search Result 282, Processing Time 0.026 seconds

Mechanical strengths of self compacting concrete containing sawdust-ash and naphthalene sulfonate

  • Elinwa, Augustine U.;Mamuda, Mamuda;Ahmed, M.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.301-308
    • /
    • 2014
  • The present research work is on the effect of sawdust ash (SDA) on the mechanical strengths of self compacting concrete (SCC) using naphthalene sulfonate (NS) as a plasticizer. Experiments on compressive, flexural and splitting tensile strengths are conducted and the data analyzed using the Minitab 15 software. The results showed that SDA can defer the reaction of cement hydration and prolong the setting times of cement paste. This was very much pronounced on the flexural and splitting tensile strengths at 90 days of curing which are 36 % and 33 % higher than the control strengths, respectively. The study has proposed strength relations of mortar compressive strength with the flexural and splitting tensile strengths and these are, 5 and 7 times respectively. The flexural strength is 1.5 times that of the splitting tensile. Finally, linear models were developed on these relationships.

Monitoring the effects of silica fume, copper slag and nano-silica on the mechanical properties of polypropylene fiber-reinforced cementitious composites

  • Moosa Mazloom;Hasan Salehi;Mohammad Akbari-Jamkarani
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.71-86
    • /
    • 2024
  • In this study, to reduce the amount of cement consumed in the production of cementitious composites, the effects of partial replacement of cement weight with nano-silica, silica fume, and copper slag on the mechanical properties of polypropylene fiber-reinforced cementitious composites are investigated. For this purpose, the effect of replacing cement weight by each of the aforementioned materials individually and in combination is studied. A total of 34 mix designs were prepared, and their compressive, tensile, and flexural strengths were obtained for each mix. Among the mix designs with one cement replacement material, the highest strength is related to the sample containing 2.5% nano-silica. In this mix design, the compressive, tensile, and flexural strengths improve by about 33%, 13%, and 15%, respectively, compared to the control sample. In the ones with two cement replacement materials, the highest strengths are related to the mix made with 10% silica fume along with 2% nano-silica. In this mix design, compressive, tensile, and flexural strengths increase by about 42%, 18%, and 20% compared to the control sample, respectively. Furthermore, in the mixtures containing three cement substitutes, the final optimal mix design for all three strengths has 15% silica fume, 10% copper slag, and 2% nano-silica. This mix design improves the compressive, tensile, and flexural strengths by about 57%, 23%, and 26%, respectively, compared to the control sample. Finally, two relationships have been presented that can be used to predict the values of tensile and flexural strengths of cementitious composites with very good accuracy only by determining the compressive strength of the composites.

Mechanical Characteristics of the Rift, Grain and Hardway Planes in Jurassic Granites, Korea (쥬라기 화강암류에서 발달된 1번 면, 2번 면 및 3번 면의 역학적 특성)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • The strength characteristics of the three orthogonal splitting planes, known as rift, grain and hardway planes in granite quarries, were examined. R, G and H specimens were obtained from the block samples of Jurassic granites in Geochang and Hapcheon areas. The directions of the long axes of these three specimens are perpendicular to each of the three planes. First, The chart, showing the scaling characteristics of three graphs related to the uniaxial compressive strengths of R, G and H specimens, were made. The graphs for the three specimens, along with the increase of strength, are arranged in the order of H < G < R. The angles of inclination of the graphs for the three specimens, suggesting the degree of uniformity of the texture within the specimen, were compared. The above angles for H specimens(θH, 24.0°~37.3°) are the lowest among the three specimens. Second, the scaling characteristics related to the three graphs of RG, GH and RH specimens, representing a combination of the mean compressive strengths of the two specimens, were derived. These three graphs, taking the various N-shaped forms, are arranged in the order of GH < RH < RG. Third, the correlation chart between the strength difference(Δσt) and the angle of inclination(θ) was made. The above two parameters show the correlation of the exponential function with an exponent(λ) of -0.003. In both granites, the angle of inclination(θRH) of the RH-graph is the lowest. Fourth, the six types of charts, showing the correlations among the three kinds of compressive strengths for the three specimens and the five parameters for the two sets of microcracks aligned parallel to the compressive load applied to each specimen, were made. From these charts for Geochang and Hapcheon granites, the mean value(0.877) of the correlation coefficients(R2) for total density(Lt), along with the frequency(N, 0.872) and density(ρ, 0.874), is the highest. In addition, the mean values(0.829) of correlation coefficients associated with the mean compressive strengths are more higher than the minimum(0.768) and maximum(0.804) compression strengths of three specimens. Fifth, the distributional characteristics of the Brazilian tensile strengths measured in directions parallel to the above two sets of microcracks in the three specimens from Geochang granite were derived. From the related chart, the three graphs for these tensile strengths corresponding to the R, G and H specimens show an order of H(R1+G1) < G(R2+H1) < R(R1+G1). The order of arrangement of the three graphs for the tensile strengths and that for the compressive strengths are mutually consistent. Therefore, the compressive strengths of the three specimens are proportional to the three types of tensile strengths. Sixth, the values of correlation coefficients, among the three tensile strengths corresponding to each cumulative number(N=1~10) from the above three graphs and the five parameters corresponding to each graph, were derived. The mean values of correlation coefficients for each parameter from the 10 correlation charts increase in the order of density(0.763) < total length(0.817) < frequency(0.839) < mean length(Lm, 0.901) ≤ median length(Lmed, 0.903). Seventh, the correlation charts among the compressive strengths and tensile strengths for the three specimens were made. The above correlation charts were divided into nine types based on the three kinds of compressive strengths and the five groups(A~E) of tensile strengths. From the related charts, as the tensile strength increases with the mean and maximum compressive strengths excluding the minimum compressive strength, the value of correlation coefficient increases rapidly.

Dynamic Strength Variation of Glass Epoxy Composites with respect to Strain Rates (변형률 속도에 따른 유리섬유 에폭시 복합재료의 동적 강도 변화)

  • 임태성;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.83-88
    • /
    • 2001
  • In this study, the tensile and compressive tests of glass fiber epoxy composites were performed to measure the strength variation with respect to strain rates of 1-200 $\textrm{sec}^{-1}$. In addition, tensile and compressive tests of 50-200 $\textrm{sec}^{-1}$ strain rates were conducted at a low temperature ($-60^{\circ}C$) to investigate the effects of temperature on the strength variation. From the test results, it was found that the tensile and compressive strengths increased about 100% and 70%, respectively, at the strain rates of 10-100 $\textrm{sec}^{-1}$ compared to the quasi-static strengths while the strengths were little affected by the environmental temperature variation.

  • PDF

Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete

  • Esparham, Alireza;Moradikhou, Amir Bahador;Andalib, Faeze Kazemi;Avanaki, Mohammad Jamshidi
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.219-229
    • /
    • 2021
  • In recent years, geopolymer cements, have gained significant attention as an environmental-friendly type of cement. In this experimental research, effects of different alkaline activator solutions and variations of associated parameters, including time of addition, concentration, and weight ratio, on the mechanical strengths of Granulated Ground Blast Furnace Slag (GGBFS)-based Geopolymer Concrete (GPC) were investigated. Investigation of the effects of simultaneous usage of KOH and NaOH solutions on the tensile and flexural strengths of GGBFS-based GPC, and the influence of NaOH solution addition time delay on the mechanical strengths is among the novel aspects investigated in this research. four series of mix designs and corresponding specimen testing is conducted to study different parameters of the active alkali solutions on GPC mechanical strengths. The results showed that addition of NaOH to the mix after 3 min of mixing KOH and Na2SiO3 with dry components (1/3 of the total mixing duration) resulted in the highest compressive, tensile and flexural strengths amongst other cases. Moreover, increasing the KOH concentration up to 12 M resulted in the highest compressive strength, while weight ratio of 1.5 for Na2SiO3/KOH was the optimum value to achieve highest compressive strengths.

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

An Experimental Study of Mechanical Properties of High-strength Concrete (고강도 콘크리트의 역학적 특성에 대한 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.206-215
    • /
    • 2017
  • An experimental program was carried out to investigate the mechanical properties of high-strength concrete. High-strength concrete with compressive strengths of 80 to 120 MPa was tested. Test results are presented regarding effect of water-binder ratio on compressive strength and compressive strength gain. In addition, the effect of curing methods on compressive strength, elastic modulus, splitting tensile strength, and modulus of rupture is investigated. Test results of elastic modulus, splitting tensile strength, and modulus of rupture are compared with predictions from the current design recommendations. Predictions of elastic modulus by using KCI recommendation has good agreement with test results. However, predictions of modulus of rupture by using KCI recommendation underestimate the test results. ACI 363R recommendations predict well test results of splitting tensile strength and modulus of rupture. ACI 363R recommendations for predicting splitting tensile strength and modulus of rupture can be used for high-strength concrete with compressive strengths up to 120 MPa.

Effect of the Pozzolanic Cement on Concrete Strengths with Recycled Aggregate (재생골재를 사용한 콘크리트의 강도에 미치는 포졸란 시멘트 효과)

  • 문대중;임남웅;김양배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.217-220
    • /
    • 2001
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment, especially being want of resources in Korea. For this purpose, concrete made with the pozzolanic cement and recycled aggregate was tested for compressive and tensile strength. The pozzolanic cement was a mixture of OPC(Ordinary Portland Cement) and pozzolans such as fly ash, other siliceous materials and early rapid hardening cement(ERC). It was found that the compressive strength of the pozzolanic cement was enhanced when 0.75% of ERC was dozed, as compared with OPC mortar. It was also shown that compressive and tensile strength of concrete with recycled aggregate and pozzolanic cement were higher than those of concrete with crushed stones and OPC. It was concluded that the pozzolanic cement influenced on the increase of concrete strengths with recycled aggregate.

  • PDF