• Title/Summary/Keyword: compression parameters

Search Result 1,053, Processing Time 0.03 seconds

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Equivalent Friction Angle and Cohesion of the Generalized Hoek-Brown Failure Criterion in terms of Stress Invariants (응력불변량으로 표현한 일반화된 Hoek-Brown 파괴조건식의 등가 마찰각 및 점착력)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.462-470
    • /
    • 2012
  • Implementing the generalized Hoek-Brown failure criterion in the framework of the Mohr-Coulomb criterion requires the calculation of the equivalent friction angle and cohesion. In the conventional method based on the Balmer (1952)'s theory, the tangential instantaneous friction angle and cohesion are expressed in terms of the minimum principal stress ${\sigma}_3$, which does not provide the information about the dependency of the equivalent parameters on the hydrostatic pressure and the stress path. In this study, this defect of the conventional method has been overcome by representing the equivalent parameters in terms of stress invariants. Through the example implementation of the new method, the influence of the magnitude of the hydrostatic pressure and the Lode angle on the tangential instantaneous friction angle and cohesion is investigated. It turns out that the tangential instantaneous friction angle is maximum when the stress condition is triaxial extension, while the tangential cohesion is maximum when the stress condition is triaxial compression. The dependency of the equivalent Mohr-Coulomb strength parameters on the hydrostatic pressure and the Lode angle tends to be more substantial for the favorable rockmass of larger GSI value.

Estimation to Shear Strength of Basalt using Lade's Three-dimensional Failure Criterion (Lade의 3차원 파괴규준을 이용한 현무암의 전단강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • In this study, a series of triaxial tests to Jeju basalt were carried out and then shear strength parameters of rock were estimated by the Lade's three-dimensional failure criterion. Also, the characteristics of shear strength parameters and failure plane which were estimated by the three-dimensional failure criterion were analyzed and this failure criterion was compared with the Mohr-Coulomb failure criterion. The variables of ${\eta}_1$ and m are derived from the relationship between ($I_1^3/I_3-27$) and ($P_a/I_1$) during the failure period using the Lade's three-dimensional failure criterion. The failure plane size of Tracy-basalt has the largest plane and that of Scoria has the smallest plane among other octahedral planes which is the three-dimensional failure plane. Also, the failure plane of Tracy-basalt is formed as a triangle and that of Scoria is formed as a circle among other octahedral planes. As the result of comparison with the triaxial test results and the Lade's failure envelope and the Mohr-Coulomb failure envelope, the Lade's failure envelope matched up under higher stress, while the Mohr-Coulomb failure envelope matched up under lower stress. Also, the Lade's three-dimensional failure plane is larger than the Mohr-Coulomb three-dimensional failure plane. It means that the shear strength parameters estimated by the Lade's failure criterion is larger than that of the Mohr-Coulomb failure criterion.

  • PDF

A Study for the Adaptation of Simulation of Uniaxial Compressive Strength Test for Concrete in 3-Dimensional Particle Bonded Model (3차원 입자 결합 모델에서 콘크리트의 일축압축실험 모사 적용성 연구)

  • Lee, Hee-Kwang;Jeon, Seok-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2008
  • In an uniaxial compressive test of a concrete standard specimen (150$\times$300 mm) the crack initiation and extension with the stress increase are the major reason of the failure, which is similar to the breakage of the particle bonding in the simulation by using particle bonded model, especially particle flow code in 3 dimensions (PFC3D) developed by Itasca Consulting Group Inc. That is the main motive to study the possibility of an uniaxial compressive strength test simulation. It is important to investigate the relationship between the micro-parameters and the macro-properties because the 3-dimensional particle bonded model uses the spherical particles to analyze the physical phenomena. Contact bonded model used herein has eight micro-parameters and there are five macro-properties; Young's modulus, Poisson's ratio, uniaxial compressive strength and the crack initiation stress and the ratio concerning the crack propagation with the stress. To simulate the compressive test we made quantitative relationships between the micro-parameters and the macro-properties by using the fractional factorial design and various sensitivity analyses including regression analysis, which result in the good agreement with the previous studies. Also, the stress-stain curve and the crack distribution over the specimen given by PFC3D showed the mechanical behavior of the concrete standard specimen under the uniaxial compression. It is concluded that the particle bonded model can be a good tool for the analyzing the mechanical behavior of concrete under the uniaxial compressive load.

Effect of Stress Level on Strength Parameters of Cemented Sand (응력조건에 따른 고결모래의 강도정수 평가)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.143-151
    • /
    • 2007
  • The factors affecting the geotechnical properties of cemented sands are known to be relative density, cementation level, stress level, and particle characteristics such as particle size, shape and surface conditions. It has been widely accepted that the friction angle of cemented sands is not affected by cementation while the cohesion of cemented sands was significantly influenced by cementation. The cementation that is a critical component of the strength of cemented sands will be broken with increasing confining pressure and great caution is required in evaluating the cohesion of cemented specimens due to their fragilities. In this study, a series of drained shear tests were performed with specimens at various cementation levels and confining stresses to evaluate the strength parameters of cemented sands. From the experiments, it was concluded that the cohesion intercept of cemented sand experiences three distinctive zone(cementation control zone, transition zone, and stress control zone), as the cementation level and the confining stress varies. In addition, for accurate evaluation of the strength parameters, the level of confining stress triggering the breakage of cementation bond should be determined. In this study, the relationship between the maximum confining stresses capable of maintaining the cementation bond intact and unconfined compression strength of the cemented sand was established.

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet (CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Koh, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2017
  • This study deals with the strengthening effect and behavioral characteristics of square concrete column wrapped with carbon FRP sheet. The increase in axial compression capacity comes from the confinement effect of wrapped CFRP sheet. Because of the shape of square concrete column, the confinement effect is smaller than that in circular column. For the experimental program, four parameters including the number of sheet, the size of column specimen, the aspect ratio, the corner rounding, and the transformation in shape from square to circular were selected to examine the strengthening effect and behavioral characteristics for each parameter. Experimental program comprised fifty five square concrete column specimens for different eleven types. The compression test results confirmed that the strengthening effect can be increased by the confinement of wrapped and bonded CFRP sheet. However, the confining effect was decreased with the increase of square column size. The other hand, the ductility in square concrete column greatly increased due to caging effect of CFRP sheet. The transformation in shape from square to circular considerably increased both the compressive strength and the ductility of the concrete column wrapped with CFRP sheet. In addition, using test results and existing studies, accuracy and reliability of the existing strength models for CFRP-confined square concrete are verified.

A Possible Test Method Proposed for Resilient Modulus (MR) and Analysis of Correlation between Resilient Modulus and Shear Modulus of Track Subgrade Soil (흙노반재료의 회복탄성계수(MR) 결정을 위한 반복삼축압축시험법 제시 및 변형계수 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.85-98
    • /
    • 2017
  • In general, under the repetitive dynamic load generated by rail cars running on the track, subgrade soil experiences changes of stress conditions such as deviatoric stress (${\sigma}_d$) and bulk stress (${\theta}$). Due to the repetitive change of deviatoric stress (${\sigma}_d$) with number of loadings, the resilient modulus ($M_R$) can be obtained by using the measured resilient strain (${\varepsilon}_r$) after a sufficient number of loadings. At present, no plausible and unified test method has been proposed to obtain the resilient modulus of railway track subgrade soil. In this study, a possible test method for obtaining the resilient modulus ($M_R$) of railway track subgrade soil is proposed; this test, by utilizing repetitive triaxial compression testing, can consider all the important parameters, such as the confining stress, deviatoric stress, and number of loadings. By adapting and using the proposed test method to obtain $M_R$, $M_R$ values for compacted track subgrade soil can be successfully determined using soil obtained in three field sites of railway track construction with changing water content range from OMC. In addition, shear modulus (G) ~ shear strain (${\gamma}$) relation data were also obtained using a mid-size RC test. A correlation analysis was performed using the obtained G and $M_R$ values while considering the strain levels and modes of strain direction.

Analysis of Mass Transport in PEMFC GDL (연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구)

  • Jeong, Hee-Seok;Kim, Jeong-Ik;Lee, Seong-Ho;Lim, Cheol-Ho;Ahn, Byung-Ki;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.979-988
    • /
    • 2012
  • The 3D structure of GDL for fuel cells was measured using high-resolution X-ray tomography in order to study material transport in the GDL. A computational algorithm has been developed to remove noise in the 3D image and construct 3D elements representing carbon fibers of GDL, which were used for both structural and fluid analyses. Changes in the pore structure of GDL under various compression levels were calculated, and the corresponding volume meshes were generated to evaluate the anisotropic permeability of gas within GDL as a function of compression. Furthermore, the transfer of liquid water and reactant gases was simulated by using the volume of fluid (VOF) and pore-network model (PNM) techniques. In addition, the simulation results of liquid water transport in GDL were validated by analogous experiments to visualize the diffusion of fluid in porous media. Through this research, a procedure for simulating the material transport in deformed GDL has been developed; this will help in optimizing the clamping force of fuel cell stacks as well as in determining the design parameters of GDL, such as thickness and porosity.