• Title/Summary/Keyword: compression parameters

Search Result 1,053, Processing Time 0.025 seconds

Consolidation Behavior of Soft Ground by prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.133-143
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains was performed to anayze the effect of parameters of the very soft clay at a test site. compression index and the coefficient of horizontal consolidation obtained by back-analysis of settlement data were compared with those obtained by means of laboratory tests. Hyperbolic method, Asaoka meoth and curve fitting method were used to compute final settlement of coefficient of consolidation. The relationships of settlement measurement(Sm) versus design settlement(St) and the measurement consolidation ratio(Um) versus design consolidation (Ut) were shown as Sm=(1.0~1.1) St , Um=(1.13~1.17) Ut at 1.0m spacing of drain and Sm=(0.7~0.8)St, Um= (0.92~0.99) Ut at 1.5 m spacing of drain, respectively . The relationships of the field compression index(CcField) and virgin compression index(vcc lab) were shown as Ccfield =(1.0~1.2)vcc lab . But it was nearly within the same range when considering the error factor with the determination method of virgin compression index and the prediction back-analysis of the settlement data was larger than the coefficient of vertical consolidation, and the ratio of consolidation coefficient (Ch/Cv) was Ch =(2.4~2.9) Cv , Ch=(3.4~4.2) Cv at 1.0m and 1.5m spacing of drain, respectively.

  • PDF

Development of a Computer Program for Bulk-type Container Design using Optimum Design Parameter Analysis (산물형 포장상자의 최적설계 요인분석에 의한 설계 프로그램 개발)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • If an optimum design technique is applied in the design of packaging container for bulk-type products, merits on the side of not only economic and compression performance but distribution efficiency are expected. Accordingly, minimum board area (mRBA), compression strength (CS) and compression strength per unit area (mCSPA) are important design parameters in optimum design of packaging container for bulk-type products. In this study, mathematical models for mRBA, CS and mCSPA of container as algorithm for optimum design program were developed. In order to develop these models, compression test by various dimensions of container and response surface analysis for mRBA, CS, and mCSPA of container were carried out. In the developed models, volume, W/L ratio and depth of container were principal independent variables. On the found of these models, optimum design program having faculties of outward and inward optimum design and information design was developed. Though the packaging specifications are same, required board area, board combination and cost of the corrugated board required container manufacture were greatly different by boundary conditions in outward design. Moreover, about 6.3∼10.1% in weight of container was lighter, and about 13.2∼25.6% in cost of container was reduced when the program was applied for 2 kinds of bulk-type products.

Experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete column subjected to eccentric compression

  • Yu, Feng;Kong, Zhengyi;Li, Deguang;Vu, Quang-Viet
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • An experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete columns subjected to eccentric compression was carried out. Two parameters, such as the CFRP strips spacing and eccentricity of axial load, were considered. The experimental results showed that all specimens failed by compressive yield of longitudinal steel bar and rupture of CFRP strips. The bearing capacity of specimen decreases as the eccentricity or the CFRP strips spacing increases. The stress-strain relation of specimens undergoes two stages: parabolic and linear stages. In the parabolic stage, the slope of stress-strain curve decreases gradually as the eccentricity of axial loading increases while the CFRP strips spacing has little effect on the slope of stress-strain curve. For the linear stage, the slope of stress-strain curve decreases as the eccentricity of axial load or the CFRP strips spacing increases. A model for predicting the stress-strain relation of columns under eccentric compression is proposed and it agrees well with various test data.

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • Kim, Roksoon;Gopalswamy, Nat;Moon, Yongjae;Cho, Kyungsuk;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

Microwave Signal Spectrum Broadening System Based on Time Compression

  • Kong, Menglong;Tan, Zhongwei;Niu, Hui;Li, Hongbo;Gao, Hongpei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • We propose and experimentally demonstrate an all-optical radio frequency (RF) spectrum broadening system based on time compression. By utilizing the procedure of dispersion compensation values, the frequency domain is broadened by compressing the linear chirp optical pulse which has been multiplexed by the radio frequency. A detailed mathematical description elucidates that the time compression is a very preferred scheme for spectrum broadening. We also report experimental results to prove this method, magnification factor at 2.7, 8 and 11 have been tested with different dispersion values of fiber, the experimental results agree well with the theoretical results. The proposed system is flexible and the magnification factor is determined by the dispersion values, the proposed scheme is a linear system. In addition, the influence of key parameters, for instance optical bandwidth and the sideband suppression ratio (SSR), are discussed. Magnification factor 11 of the proposed system is demonstrated.

Tree Coding of Speech Signals (음성신호에 대한 트리 코우딩)

  • 김경수;이상욱
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.04a
    • /
    • pp.18-21
    • /
    • 1984
  • In this paper, the tree coding using the (M, L) multi-path search algorithm has teen investigated. A hybrid adaptation scheme which employs a block adaptation as well as a sequential dadptation is described for application in quantization and compression of speech signals. Simulation results with the gybrid adaptation scheme indicate that a relatively good speech quality can be obtained at rate about 8Kbps. All necessary parameters such as MlL and filter-order were found from simulation and these parameters turned out to be a good compromise between the complexity and overall performance.

  • PDF

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Compressive Deformation Characteristics of Logging Residues by Tree Species (수종별 벌채부산물의 압축 변형 특성)

  • Oh, Jae Heun;Choi, Yun Sung;Kim, Dae Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.198-205
    • /
    • 2015
  • The aim of this study was to provide the basic design parameters for developing logging residue compression machines by investigating compressive deformation characteristics of different types of logging residues. To achieve these objectives, Pinus rigida, Pinus koraensis and Quercus mongolica were selected as specimens, and compression-deformation tests by UTM(universial testing machine) were conducted. The experimental dataset were used to set up the model based on the compression-deformation ratio in the form of exponential function. The results showed that stress coefficient in terms of mechanical properties of logging residues was decreased, whereas strain coefficient tended to be increased as the number of compression increased at target density of $350kg/m^3$ and $400kg/m^3$. The model presented that the required stress was decreased as the number of compression increased, and the stress growth rate was swelled compared to the change of the deformation rate. Therefore, it showed that proper initial compression force was a significant variable in order to achieve the target density of logging residue.

Compression Methods for Time Series Data using Discrete Cosine Transform with Varying Sample Size (가변 샘플 크기의 이산 코사인 변환을 활용한 시계열 데이터 압축 기법)

  • Moon, Byeongsun;Choi, Myungwhan
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.201-208
    • /
    • 2016
  • Collection and storing of multiple time series data in real time requires large memory space. To solve this problem, the usage of varying sample size is proposed in the compression scheme using discrete cosine transform technique. Time series data set has characteristics such that a higher compression ratio can be achieved with smaller amount of value changes and lower frequency of the value changes. The coefficient of variation and the variability of the differences between adjacent data elements (VDAD) are presumed to be very good measures to represent the characteristics of the time series data and used as key parameters to determine the varying sample size. Test results showed that both VDAD-based and the coefficient of variation-based scheme generate excellent compression ratios. However, the former scheme uses much simpler sample size decision mechanism and results in better compression performance than the latter scheme.

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.