DOI QR코드

DOI QR Code

Compression Methods for Time Series Data using Discrete Cosine Transform with Varying Sample Size

가변 샘플 크기의 이산 코사인 변환을 활용한 시계열 데이터 압축 기법

  • Received : 2015.08.19
  • Accepted : 2016.02.19
  • Published : 2016.05.15

Abstract

Collection and storing of multiple time series data in real time requires large memory space. To solve this problem, the usage of varying sample size is proposed in the compression scheme using discrete cosine transform technique. Time series data set has characteristics such that a higher compression ratio can be achieved with smaller amount of value changes and lower frequency of the value changes. The coefficient of variation and the variability of the differences between adjacent data elements (VDAD) are presumed to be very good measures to represent the characteristics of the time series data and used as key parameters to determine the varying sample size. Test results showed that both VDAD-based and the coefficient of variation-based scheme generate excellent compression ratios. However, the former scheme uses much simpler sample size decision mechanism and results in better compression performance than the latter scheme.

실시간으로 여러 시계열 데이터를 수집, 저장하는 데는 많은 저장 공간을 요구하게 된다. 이러한 공간 문제를 해결하는 방안으로, 이산 코사인 변환 압축에서 가변 샘플 크기를 사용하는 방안을 제안하였다. 시계열 데이터 셋은 값의 변화가 작을수록, 그리고 변화의 빈도가 낮을수록 압축률이 높아지는 특성을 가지고 있으며 이러한 특성을 잘 반영할 수 있는 척도로 변동 계수와 인접 요소 간 변동성 계수를 사용하여 가변 샘플 크기를 결정하는 데 사용하였다. 여러 실제 데이터 셋을 대상으로 시험한 결과, 두 방식 모두 양호한 압축률을 보이고 있다. 그러나 인접 요소간 변동성 계수 기반 압축 방식이 변동 계수 기반 방식 보다 샘플 크기 결정 방식이 훨씬 간단할 뿐만 아니라 보다 나은 압축률을 보임을 확인하였다.

Keywords

References

  1. A. Singhal, D. E. Seborg, "Data Compression Issues with Pattern Matching in Historical Data," Proc. of the American Control Conf., pp. 1-6, Jun. 2003.
  2. M. J. Watson, A. Liakopoulos, D. Brzakovic, and C. Georgakis, "A Practical Assessment of Process Data Compression Techniques," Ind. & Eng. Chem. Res., Vol. 37, No. 1, pp. 267-274, 1998. https://doi.org/10.1021/ie970401w
  3. G. K. Wallace, "The JPEG Still Picture Compression Standard," Communications of the ACM, Vol. 34, No. 4, pp. 30-44, Apr. 1991.
  4. M. L. Hilton, B. D. Jawerth, and A. Sengupta, "Compressing Still and Moving Images with Wavelets," Multimedia Systems, Vol. 2, Issue 5, Springer, pp. 218-227, Dec. 1994. https://doi.org/10.1007/BF01215399
  5. D. F. Hoag, V. K. Ingle, and R. J. Gaudette, "Low-Bit-Rate Coding of Underwater Video Using Wavelet-Based Compression Algorithms," IEEE Journal of Oceanic Engineering, Vol. 22, No. 2, Apr. 1997.
  6. Z. Lu, D. Y. Kim, and W. A. Pearlman, "Wavelet Compression of ECG Signals by the Partitioning in Hierarchical Trees Algorithm," IEEE Trans. Biomedical Engineering, Vol. 47, No. 7, Jul. 2000.
  7. M. Pooyan, A. Tahera, M. Moazami-Grodarzi, and I. Saboori, "Wavelet Compression of ECG-Signals Using SPIHT Algorithm," International Journal of Signal Processing, Vol. 1, No. 4, pp. 219-225, Fall 2005.
  8. X. Wang and J. Meng, "A 2-D ECG Compression Algorithm based on Wavelet Transform and Vector Quantization," Digntal Signal Processing 18, pp. 179-188, 2008. https://doi.org/10.1016/j.dsp.2007.03.003
  9. H. Chen, J. Li, and P. Mohapatra, "RACE: Time Series Compression with Rate Adaptivity and Error Bound for Sensor Networks," IEEE International Conference on Mobile Ad-hoc and Sensor Systems, pp. 124-133, Oct. 2004.
  10. C. Murphy and H. Singh, "Wavelet Compression with Set Partitioning for Low Bandwidth Telemetry from AUVs," Proc. of WUWNet'10, 2010.
  11. N. Ahmed, T. Natarajan, and K.R. Rao, "Discrete Cosine Transform," IEEE Trans. on Computers, pp. 90-93, Jan. 1974.
  12. The Data Conversion Handbook, Analog Devices, Inc., Edited by Walt Kester, Newnes 2005.