• Title/Summary/Keyword: compression axial load

Search Result 393, Processing Time 0.022 seconds

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

Experimental and Numerical Study on the Elastic-Plastic, Large Deflection, Post-Buckling Behavior of Axially Compressed Circular Cylindrical Tubes (축방향 압축력을 받는 원통형 박막소재의 좌굴후 탄소성 대변형에 관한 실험 및 해석 연구)

  • Kwon, Se-Mun;Yun, Hee-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.969-974
    • /
    • 2001
  • Circular cylindrical tubes are widely used in structures such as vehicles and aircraft structures, where light weight and high compressive/bending/torsional load carrying capacity are required. When axially compressed, relatively thick circular cylindrical tubes deform in a so-called ring mode. Each ring develops and completely collapses one by one until the entire length of the tube collapses. During the collapse process the tube absorbs a large amount of energy. Like honey-comb structures, circular cylindrical tubes are light weighted, are capable of high axial compressive load, and absorb a large amount of energy before being completely collapsed. In this report, the subject of axial plastic buckling of circular cylindrical tubes was reviewed first. Then, the axial collapse process of the tubes in a so-called ring mode was studied both experimentally and numerically. In the experiment, steel tubes were axially compressed slowly until they were completely collapsed. Fixed boundary condition was provided. Numerical study involves axisymmetric, elastic-plastic, large deflection, self-contact mechanisms. The measured and calculated results were presented and compared with each other. The purpose of the study was to evaluate the load carrying capacity and the energy absorbing capacity of the tube.

  • PDF

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II))

  • 차천석;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

An Experimental Study on Strengthened Behavior of Reinforced Concrete Columns with Steel Plate (강판 보강된 철근 콘크리트 기둥의 거동에 대한 실험적 연구)

  • 박주현;홍기섭;홍영균;신영수;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.557-564
    • /
    • 1997
  • This research is aimed to evaluate the effects of repair conditions, axial load intensities and the enlargement of cross sections after strengthening with steel plate and on the structural behavior of the reinforced concrete columns subjected to axial and lateral loadings. 6 columns were tested under uniform axial compression and concentrated load at the midspan until failiure occurs. As test results, It has been found that the amount of grout bar and the condition of strengthening significantly affect the behavior or reinforced concrete column with steel plate and grout 4 bar (C-G4S2 serise) and enlarged reinforced concrete column with steel plate and grout 8 bar (C-G8S2 serise) are increased to 1000% and 1200% in comparison of those of unstrengthened reinforced concrete columns, respectively

  • PDF

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

Structural Performance of Shearwall with Sectional Shape in Wall-type Apartment Buildings (단면현상에 따른 벽식구조 전단벽의 구조성능 평가)

  • 한상환;오영훈;오창학;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.3-14
    • /
    • 2000
  • Structural performance of the walls subjected to lateral load reversals depends on various parameters such as loading history, sectional shape, reinforcement, lateral confinement, aspect ratio, axial compression, etc. Thus, the performance of the shearwall for wall-type apartment should be evaluated properly considering above parameters. This study investigates the effect of sectional shape on the structural performance of the wall. Sectional shape of the specimen is rectangular, barbell and T. Based on this experimental results, all specimens behaved as ductile fashion and failed by concrete crushing of the compression zone. Deformation index of those specimens evaluated better than 3 of ductility ratio, and 1.5% of deformability specified by seismic provision. Moreover, the performance of the rectangular shaped specimen, whose compression zone was confined with U-bar and cross tie, was as good as the barbell shaped specimen. Therefore, if we considered construction practice such as workmanship and detailing, shearwall with rectangular section may be more economical lateral load resisting system.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.