• Title/Summary/Keyword: compressibility model

Search Result 142, Processing Time 0.028 seconds

Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure (타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성)

  • Han, Seong-Ho;Seo, Jeong-Sik;Shin, Jung-Kun;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.

A Numerical Simulation of Longitudinal Vortex in Turbulent Boundary Layers (3차원 난류경계층 내에 존재하는 종방향 와동의 유동특성에 관한 수치적 연구)

  • Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.802-813
    • /
    • 2000
  • This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

Numerical Simulation of Hydro-Acoustic Flow in Piezo Inkjet Print Head (피에조 잉크젯 헤드의 음향파 거동의 수치 해석)

  • Lee, You-Seop;Wee, Sang-Kwon;Oh, Se-Young;Chung, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.51-61
    • /
    • 2007
  • This paper presents numerical and theoretical studies of acoustic wave interactions in slightly compressible liquids within piezoelectrically driven inkjet print heads. The interconnected flow channels may cause jet crosstalk, resulting in poor printing quality. It should be reduced by modifying the channel structure with the acoustic wave interactions considered. Compressible gas flow driven by the sudden movement of a top wall in the channel is calculated using Flow3D and is validated with the narrow gap theory. Limited compressibility model of the Flow3D is employed to calculate pressure waves of slightly compressible ink flow. It is found that reducing restrictor width can damp out the jet crosstalk by inhibiting the pressure wave propagation. The degree of crosstalk has been quantified using the maximum values of cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed. This finding is verified by drop visualization experiments using silicon-micromachined piezo inkjet print heads that are fabricated by our group.

The Numerical Study on the Cavitation (Cavitation 현상에 관한 수치적 연구)

  • Chang Seonyong;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.126-131
    • /
    • 2004
  • A numerical code for cavitation is developed based on pressure-based algorithm. The k-\varepsilon$ model (with wall function) is used for turbulence, and volume transport equation is used for cavitation model. The compressibility is not considered for the flow field is low speed.

  • PDF

Consolidation Model and Numerical Analysis for Soft Clay Ground Considering Characteristics of Material Function (물질함수특성을 고려한 연약 점토지반의 압밀모델 및 수치해석)

  • Jeon, Je-Sung;Yi, Chang-Tok;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 2004
  • Terzaghi's one-dimensional consolidation theory has some important assumption, which can't be applicable to predict the behavior of soft clay ground. Especially, predictions using infinitesimal strain and linear material function related with permeability can give rise to mistake in comparison with the result of real behavior in site. For this reason, Gibson et al. established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory, which can consider non-linearity of material function. But it is difficult to apply this theory to predict the behavior of common soft clay ground with vertical drain. In this study, consolidation model which can consider the vertical and horizontal flow of a fully saturated clay layer, self-weight of soil and nonlinear characteristics of compressibility and permeability are derived. Numerical analysis scheme, which can be applied to consolidation analysis by derived consolidation model in this study was developed. The characteristics of material function were examined using laboratory testing such as standard consolidation test, Rowe-cell test and modified consolidation test.

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

Influence of Progressive Consolidation on Consolidation Behavior of Normally Consolidated Clayey Soil with Vertical Drains (연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향)

  • Yune Chan-Young;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.5-18
    • /
    • 2005
  • In this study, the influence of progressive consolidation from the drainage boundary on the subsequent process of consolidation was investigated. Analytical theory and numerical program f3r consolidation of clayey soil were developed based on finite difference method, in which spatial variation of permeability and volume compressibility were implemented. And model ground with normally consolidated clayey soils and a vertical drain at its center were simulated. Various types of soils with different relations between coefficient of volume compressibility and permeability and void ratio were applied. Also numerical simulations based on the properties of the normally consolidated clay at Nakdong River basin and reconstituted kaolinite soil were performed to recognize its practical impact. Consequently, it is found out that retardation of consolidation induced by progressive consolidation is very important to understand consolidation behavior on field conditions and its effect is remarkable at the initial state of consolidation, and increases with plasticity index and applied load.

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

ESTIMATION OF CAKE FORMATION ON MICROFILTRATION MEMBRANE SURFACE USING ZETA POTENTIAL

  • Alayemieka, Erewari;Lee, Seock-Heon;Oh, Jeong-Ik
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.201-207
    • /
    • 2006
  • A simple empirical model with good quantitative prediction of inter-particle and intra-particle distance in a cake layer with respect to ionic strength was developed. The model is an inverse length scale with functions of interaction energy and hydrodynamic factor and it explains that the inter-particle and intra-particle distance in a cake is directly related to the effective size of particles. Particle compressibility with respect to ionic strength was also predicted by the model. The model corroborated very well with experimental results of polystyrene microsphere latex particles microfiltation in a dead end operation. From the results of the model, specific cake resistance could be controlled by the same variables affecting the height of particle energy barrier described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.