• Title/Summary/Keyword: compounding

Search Result 342, Processing Time 0.021 seconds

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

Study of the Mechanical Properties of GFRTP by Pressure Additives and Compounding (첨가제 배합 및 압력에 따른 GFRTP의 기계적 특성 연구)

  • Oh, Seung Min;Kim, Jong Su;Seol, Gyun Ho;Yun, Ye Ji;Kim, Young Min;Yang, Dong Su;No, Su Jin;Lee, Gyu Se;Gang, Sung Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.9-13
    • /
    • 2014
  • Glass fiber reinforced thermoplastics(GFRTP) is made by adding chemical additive to glass fabric which is strong at a high temperate, incorrodible, and good at intensity and specific gravity. Although we focused on the weight lightening, the intensity of GFRTP is also important. To remedy thermoplastic resin's inferior property of matter to thermo-hardening resin, we formed several specimen, differing the chemical additive as Homo PP, MAPP 3%, Rubber 5%, and mixed. We put pressure of 5 type on the specimens. The analyses result for the different pressure, the resin spreads evenly, then the coherence is increased. Eventually, the mechanical properties are changed. When high intensity is needed, it is good idea to use polypropylene(PP) which has good coherence with glass fabric as chemical additive. We can get better intensity when we form the resin at the optimum pressure depending on mixing of chemical additive and glass fabric than when we increase the pressure.

A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster (도로터널내 화재 발생시 매연 제거를 위한 모델 해석)

  • 윤성욱;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

Preparation and Properties of Poly(organosiloxane) Rubber Nanocomposite Containing Ultrafine Nickel Ferrite Powder (Nickel Ferrite 함유 Poly(organosiloxane) Rubber Nanocomposite의 제조와 특성)

  • Kang Doo Whan;Lee Kweon Soo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2005
  • $\alpha,\omega-Vinyl$ poly (dimethyl-methylphenyl) siloxane prepolymer (VPMPS ) was prepared by the equilibrium polymerization of octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane $(D_3^{Me,Ph)$, and 1,1,3,3-tetramethyl-1,3-divinyldisiloxane (MVS). And also, of $\alpha,\omega-hydrogen$ poly(dimethyl-methyl)siloxane prepolymer (HPDMS) as end blocker was prepared from octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethylcyclotrisiloxane $(D_3^:Me,H})$, and 1,1,3,3-tetramethyldisiloxane (MS). Nickel ferrite nanoparticles having spinel magnetic material was prepared by the sol-gel method using PAA as a chelating agent. Poly(organosiloxane) rubber nanocomposite containing silica and nickel ferrite ultrafine powder modified with 1,3-divinyltetramethyldisilazane (VMS) was prepared by compounding VPMPS, HPDMS, and catalyst in high speed dissolver. The mechanical properties, heat dissipating away characteristics, and volume resistivities for POX-30 and POX-50 were measured.

Preparation and Thermal Conductivity of Poly(organosiloxane) Rubber Composite with Low Hardness (저경도 Poly(organosiloxane) Rubber Composite의 제조와 열전도 특성)

  • Kang Doo Whan;Yeo Hak Gue
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.161-165
    • /
    • 2005
  • $\alpha,\omega-Vinyl$ poly(dimethyl-methylphenyl) siloxane propelymer (VPMPS ) was prepared by the equilibrium polymerization of octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane $(D_3^{MePh})$, and 1,1,3,3-tetramethyl-1,3-divinylsiloxane (MVS) as end-blocker. And also, $\alpha,\omega-hydrogen$ poly(dimethyl-methyltrifluoropropyl)siloxane prepolymer (HPDMFS) was prepared from $D_4$, 1,3,5-trimethyl-1,3.5-trifluoropropylcyclotrisiloxane $(D_3^{MeF3P})$, and 1,1,3,3-tetramethyldisiloxane. Poly(organosiloxane) rubber composite containing high thermal conductive filler was prepared by compounding VPMPS, HPDMFS, spherical alumina, and catalyst in high speed dissolver. The crosslinking density of poly (organosiloxane) composite was measured by oscillation rheometer. Poly(organosiloxane) composites of TC-POXR-2 and TC-POXR-4 prepared by controlling average diameters of thermal conductive filler, spherical alumina according to Horsfield's packing model were shown to 1.13 W/mK for TC-POXR-2 and 1.19 W/mK for TC-POXR-4.

Preparation of Polypropylene/Clay Nanocomposites Using Aminosilane Treated Clay (아미노실란 개질 클레이를 사용한 폴리프로필렌 클레이 나노복합재료)

  • Hong Chae-Hwan;Bae Jin-Woo;Lee Yong-Bum;Lee Choon-Soo;Jho Jae-Young;Nam Byeong-Uk
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.318-325
    • /
    • 2006
  • Polypropylene-clay nanocomposites were studied by the modification of clay with amino silanes to introduce covalent bonds in nanocomposites, and prepared by melt-compounding with polypropylene, clay modified with amino silanes and maleic anhydride grafted polypropylene. The . .structure and surface properties of modified clay were determined by x-ray diffraction, infrared spectrum, and solid-state $^{29}Si$ nuclear magnetic resonance spectrum. The modification of clay with aminosilanes led to the increase of the silicate interlayers to about $19.8{\AA}$, the weakening effects of hydroxy group at $3650cm^{-1}$ and the signal of amine groups at -69 ppm proved that the modification had taken place.

Preparation and Properties of Siloxane Modified EPDM/HDPE/Carbon black Composite (실록산 변성 에틸렌프로필렌 고무/고밀도 폴리에틸렌/카본블랙 복합체의 제조와 물성)

  • Lee, Byoung-Chul;Kang, Doo-Whan
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • Maleic anhydride (MA) modified ethylene-propylene-diene terpolymer (MEPDM) was pre-pared from solution polymerization. MEPDM-g-PST copolymer was prepared by melt polymerization of male ate d EPDM and quaternary ammonium silyl polydimethylsiloxane -7,7,8,8- tetracyanoquinodimethane (TCNQ) adduct (PST) in internal mixer and MEPDM-g-PST/HDPE/CB (MPEC) was prepared by com-pounding HDPE, MEPDM-g-PST copolymer and carbon black (CB, 5, 10, 15, and 20 phr), and HDPE/ CB (PEC) by compounding HDPE and CB (5, 10, 15, and 20 phr), respectively. The structure of MEPDM-g-PST copolymer was confirmed by measuring the FTIR. The maximum grafting ratio of MA onto EPDM was 2.35%. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix show that CB in MPEC was better dispersed than that in PEC composite.

Physical and Chemical Characteristics of Multi-walled Carbon Nanotube (MWCNT) with Acid-treatment and Coupling Agent on the Properties of Styrene Butadiene Rubber (SBR) (SBR에 산 처리된 MWCNT 및 커플링제 적용 시 발현되는 물리.화학적 특성 연구)

  • Song, Sung-Ho;Jeong, Ho-Kyun;Kang, Yong-Gu;Cho, Choon-Tack
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • The effects of acid-treated MWCNT and coupling agent on properties of MWCNT/SBR are investigated in this work. The MWCNTs oxidized using sulfuric and nitric acids were analyzed by the Raman scattering and Fourier transformed infrared spectroscopy(FT-IR). The FT-IR results indicate the presence of -COOH groups in the treated samples, and Raman spectroscopy of the acidtreated MWCNTs further corroborates the formation of surface defect due to the introduction of carboxyl groups. And the nanocomposites reinforced with MWCNTs were characterized extensively using the scanning electron microscopy(SEM), electrical conductivity, thermal conductivity, and tensile properties measurements. The results showed that nanocomposites onto acid-treated MWCNTs enhanced mechanical properties compared to those containing MWCNTs without acid treatment. These findings confirmed the improved interfacial interactions between MWCNTs and SBR arising from the coupling agents. But the electrical and thermal conductivity of nanocomposites decreased due to the chopping and formation of surface defects of MWCNTs.

A Study on the Correlation Between Crystallinity and Dispersion Characteristics of Eco-Friendly Semiconductive for Power Cable (전력케이블용 친환경 반도전 컴파운드의 결정화도와 분산 특성의 상관관계에 대한 연구)

  • Han, Jae Gyu;Yun, Jun Hyeong;Seong, Soo Yeon;Jeon, Geun Bae;Park, Dong Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.400-404
    • /
    • 2020
  • In this paper, we study the correlation between the crystallinity of semiconductive compounds for eco-friendly power cables and the dispersive properties of carbon black. The crystal structure of the polymer material is advantageous for mechanical properties and heat-resistance. However, the polymer acts as an inhibitor to the dispersibility of carbon black. The purpose of this study is to develop a TPE semiconductive compound technology. The high heat resistance and ultra-smoothness characteristics which are required for high voltage and ultra-high voltage cables should be satisfied by designing and optimizing the structure of a non-crosslinking-type eco-friendly TPE semiconductive compound. The application of excess TPE resin was found to not only inhibit the processability in the compounding process, but also reduced the dispersion properties of carbon black due to higher crystallinity. After the crystallinity of the compound was identified through DSC analysis, it was compared with the related dispersion characteristics. Through this analysis and comparison, we designed the optimal structure of the eco-friendly TPE semiconductive compound.

A Study on the Secure Prescription Transmission System based on the XML (XML기반의 안전한 처방전 전송 시스템에 관한 연구)

  • Lee Sang-Beom;Lee Seong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1777-1782
    • /
    • 2004
  • I propose a prescription transmission system based on XML in this paper, and it is not to attach a former signature to only a XML document for encoding of XML/EDI, and it is construction, one with the prescription transmission system which is safer with what use a way to attach a digital signature to DTD. I defined sub element to manage information prescription DTD defined prescription information, patient information, medical care organ information, prescription details information, compounding of medicines details information element according to for each a component of a prescription I went along, and to have looked up, and to have obeyed information transmission at he low rank. I read a DTD file for safe prescription transmission, and I do element or property, the entity which I do it, and is extracted here, and Pasing is saved in a table while being a field. If Pasing is finished, I read and lift a hash table and carry out message a digest. I compose it with an early private key and create a digital signature.