• Title/Summary/Keyword: composites and hardness

Search Result 470, Processing Time 0.025 seconds

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates (이피디엠/폴리프로필렌 열가소성 경화물에서 오일의 블렌드 방식이 경화물의 물성에 미치는 영향)

  • Na, Sung-Su;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Influence of blend mode of extender oil on the properties of thermoplastic vulcanizates (TPVs), based on an ethylene-propylene-diene copolymer (EPDM) and a polypropylene (PP), was studied. The EPDM/PP TPVs were prepared in an open roll mill using two different modes in blending sequence of paraffinic oil and phenolic curative, i.e., Oil-Cure and Cure-Oil modes. Degree of cross-linking by gel fraction and properties such as hardness, tensile strength, elongation at break, and melt flow rate were investigated as a function of extender oil content for the two modes. Little influence of the blend mode of extender oil on the degree of cross-linking and mechanical behaviors was observed. However, the use of Cure-Oil mode in the preparation of EPDM/PP TPVs resulted in a marked increase in the level of processability as reflected by melt flow index, as compared to the use of Oil-Cure mode.

Magnetorheological Elastomer Based on Reactive Blend of Maleic Anhydride Grafted Chloroprene Rubber and Epoxidized Natural Rubber (말레무수물로 개질된 클로로프렌 고무와 에폭시화 천연고무의 반응 블렌드에 기초한 자기유변 탄성체)

  • Choi, Jinyoung;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • Self vulcanizable blend system for magnetorheological elastomer (MRE) has been studied by dispersing magneto responsible particle (MRP) on elastomeric matrix. Chloroprene rubber was modified with maleic anhydride (MAH) using heat and pressure which is called dynamic maleation process. The optimum graft ratio of MAH was found at 10 phr contents and reaction temperature of $100^{\circ}C$. This could be confirmed by FT-IR analysis. Epoxided natural rubber (ENR) was blended with modified CR-g-MAH for self vulcanization. The optimum amounts of ENR was 30 wt% in terms of scorch time and curing rate. MRE was manufactured by electromagnetic equipment and orientation of MRE was confirmed by SEM. Finally, it was found that the tensile strength of anisotropic-MRE was higher than that of isotropic-MRE and the hardness was reverse.

The Influence of Gelatin Additives on the Mechanical Properties of Electrodeposited Cu Thin Films (젤라틴 첨가에 의한 구리 박막의 기계적 특성 변화)

  • Kim, Minho;Cha, Hee-Ryoung;Choi, Changsoon;Kim, Jong-Man;Lee, Dongyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.884-892
    • /
    • 2010
  • To modify the physical properties of Cu thin films, gelatin is generally used as an additive. In this study, we assessed the effect of gelatin on the mechanical properties of electrodeposited Cu films. For this purpose, Cu/gelatin composite films were fabricated by adding 100 ppm of gelatin to an electrolyte, and tension and indentation tests were then performed. Additional tests based on pure Cu films were also performed for comparison. The Cu films containing gelatin presented a smaller grain size compared to that of pure Cu films. This increased the hardness of the Cu films, but addition of gelatin did not significantly affect the elastic modulus of the films. Cu films prepared at room temperature showed no significant change in the yield strength and tensile strength with an addition of gelatin, but we observed a dramatic decrease in the elongation. In contrast, Cu films prepared at $40^{\circ}C$ with gelatin presented a significant increase in the yield strength and tensile strength after the addition of gelatin. Elongation was not affected by adding gelatin. Presumably, the results would be closely related to the preferred orientation of the Cu thin film with the addition of gelatin and at temperatures that lead to a change in the microstructure of the Cu thin films.

A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating (저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구)

  • Kwon, Seong-Hee;Park, Dong-Yong;Lee, Dae-Yeol;Euh, Kwang-Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

Effect of Al2O3 Filler Addition on Sintering Behavior and Physical Characteristics of BaO-B2O3-ZnO Glass Ceramic System (BaO-B2O3-ZnO 결정화 유리계에서 Al2O3 Filler의 첨가에 따른 소결거동 및 물성변화)

  • Kim, Byung-Sook;Kim, Young-Nam;Lim, Eun-Sub;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.110-116
    • /
    • 2005
  • Suitable compositions which are sinterable at low temperature in the $BaO-B_{2}O_{3}-ZnO$ glass system were investigated as a function of the ratio between BaO and ZnO. The effect of $Al_{2}O_3$ filler on densification and physical characteristics of the glass was also examined. When the amount of $Al_{2}O_3$ filler increased, the densification rate and the values of dielectric constant, thermal expansion coefficient and hardness in the glass-filler composites decreased gradually. The decreasing rate of the physical properties accelerated when fine $Al_{2}O_3$ filler was used. However, the fracture toughness of the composite rather increased due to the existence of filler particles and pores which effectively suppressed crack propagation with addition of fine $Al_{2}O_3$ filler.

Thermal Aging Properties of NR Vulcanizates with Different Cure Systems (가교 시스템이 다른 NR 가황물의 열노화 특성)

  • Choi, Sung-Seen;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Changes of physical properties or NR vulcanizates with different cure systems by thermal aging were investigated. Two sulfur cure systems and one resole cure system were employed, and total contents of the curatives were varied. For the NR vulcanizates with sulfur cure systems, hardness and modulus after the thermal aging at $90^{\circ}C$ for 3 days were increased, but elongation at break and tensile strength were decreased. For the NR vulcanizates with resloe cure system, the physical properties after the thermal aging were decreased. The change of physical properties by the thermal aging was explained with the crosslink density change. The crosslink densities or the NR vulcanizates with sulfur cure systems were increased after the thermal aging, but those with resole cure system were decreased. Influence of the migration of antidegradant on the changes of physical properties was also investigated. However, the changes of physical properties by the thermal aging were not explained sufficiently with the migration of antigradant.

Cause of Fuel Leakage from the Inner Piston Packing of Afterburner Fuel Pump in an Aircraft J85-GE-21 Turbojet Engine (전투기 J85-GE-21 터보제트 엔진 후기 연소기 연료펌프의 내부 피스톤 패킹 연료 누출 원인)

  • Kim, Ik-Sik;Hwang, Young-Ha;Sohn, Kyung-Suk;Lee, Jung-Hun;Kim, Sung-Uk
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • Most of military supersonic aircraft use an afterburner. It plays an important role in performing unusual duties for supersonic flight, takeoff, and combat situations. Recently, repetitive fuel leakage from the inner piston packing rubber of afterburner fuel pump in an aircraft J85-GE-21 turbojet engine has happened. These failures have only happened in one manufacturer's parts of two manufacturers. Thus, the cause of these failures was investigated through the comparative analysis for both the failed and the unfailed with two different manufacturers using various analysis methods. The failure analysis was performed using analysis methods such as swelling or swelling ratio, total sulfur content, polymer identification, loading and surface area of carbon black, and hardness. Consequently, the main cause of this failure was identified to be insufficient loading of carbon black as a reinforcing agent, together with small surface area of carbon black and somewhat low sulfur content.

Preparation and Thermal Insulation Property of UV Curable Hybrid Coating Materials Based on Silica Aerogel (실리카 에어로겔을 이용한 자외선 경화형 복합 코팅 물질의 제조 및 단열 특성)

  • Kim, Nam-Yi;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hydrophobic silica aerogel. The surface modification of silica aerogel was performed to obtain UV curable urethane acrylate hybrid coating sols with good compatibility by using surfactant(Brij 56). The polycarbonate substrates were coated by the prepared composites and cured under UV radiation. The incorporation of aerogel with only 10 vol% of content resulted in remarkable improvement by about 28% in the thermal insulation property of the coated film, as compared with substrate. In addition, increasing aerogel content was found to give minor effect on the variation of optical transparency, adhesion, and surface hardness of the coated film.

Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites (폴리우레탄/유기화 점토 나노복합체의 모폴로지와 기계적 물성)

  • Park, Kyu-Nam;Yoon, Kwan-Han;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.224-231
    • /
    • 2007
  • Polyurethane (PU) was prepared with the compositions of polytetramethylene glycol (PTMG) having two different molecular weight (250, 1000 g/mol). The optimum composition of PTMG 250/1000 was 60/40 based on the mechanical properties. PU/organoclay nanocomposites were prepared with several kinds of organoclay. The mechanical properties of nanocomposite prepared with 93A were considerable. The improvement in tensile strength and modulus for PU/organoclay nanocomposite with the application of ultrasound compared to the PU/organoclay nanocomposite without the application of ultrasound was factors of 1.2, and hardness (shore A type) increased from 90 to 95. The difference in thermal degradation was not observed. The results of transmission electron micrographs and X-ray measurements suggest that the intercalated organoclay in PU matrix was observed.