DOI QR코드

DOI QR Code

The Influence of Gelatin Additives on the Mechanical Properties of Electrodeposited Cu Thin Films

젤라틴 첨가에 의한 구리 박막의 기계적 특성 변화

  • Kim, Minho (Department of Nano Fusion Technology, Pusan National University) ;
  • Cha, Hee-Ryoung (Department of Nano Fusion Technology, Pusan National University) ;
  • Choi, Changsoon (Department of Nanomaterials Engineering, Pusan National University) ;
  • Kim, Jong-Man (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Dongyun (Department of Nano Fusion Technology, Pusan National University)
  • 김민호 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 차희령 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 최창순 (부산대학교 나노과학기술대학 나노소재공학과) ;
  • 김종만 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 이동윤 (부산대학교 나노과학기술대학 나노융합기술학과)
  • Received : 2010.06.08
  • Published : 2010.10.22

Abstract

To modify the physical properties of Cu thin films, gelatin is generally used as an additive. In this study, we assessed the effect of gelatin on the mechanical properties of electrodeposited Cu films. For this purpose, Cu/gelatin composite films were fabricated by adding 100 ppm of gelatin to an electrolyte, and tension and indentation tests were then performed. Additional tests based on pure Cu films were also performed for comparison. The Cu films containing gelatin presented a smaller grain size compared to that of pure Cu films. This increased the hardness of the Cu films, but addition of gelatin did not significantly affect the elastic modulus of the films. Cu films prepared at room temperature showed no significant change in the yield strength and tensile strength with an addition of gelatin, but we observed a dramatic decrease in the elongation. In contrast, Cu films prepared at $40^{\circ}C$ with gelatin presented a significant increase in the yield strength and tensile strength after the addition of gelatin. Elongation was not affected by adding gelatin. Presumably, the results would be closely related to the preferred orientation of the Cu thin film with the addition of gelatin and at temperatures that lead to a change in the microstructure of the Cu thin films.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. N. Imaz, E. Garcia-Lecina, C. Suarez, J. A. Diez, J. Rodriguez, J. Molina, and V. Garcia-Navas, Trans. Inst. Metal Finish. 87, 64 (2009). https://doi.org/10.1179/174591909X424807
  2. Y. L. Kao, G. C. Tu, C. A. Huang, and J. H. Chang, Mater. Sci. Eng. A. 382, 104 (2004). https://doi.org/10.1016/j.msea.2004.04.028
  3. S. H. Kim, D. H. Shin, Y. S. Choi, J. G. Kim, and S. H. Kim, J. Kor. Inst. Met. & Mater. 43, 538 (2005).
  4. E. M. Sherif and S. M. Park, Corrosion Sci. 48, 4065 (2006). https://doi.org/10.1016/j.corsci.2006.03.011
  5. J. K. Chon and Y. Kim, J. Kor. Chem. Soc. 52, 434 (2008). https://doi.org/10.5012/jkcs.2008.52.4.434
  6. J. K. Chon and Y. Kim, J. Kor. Chem. Soc. 51, 305 (2007). https://doi.org/10.5012/jkcs.2007.51.4.305
  7. G. Kear, B. Barker, and F. Walsh, Corros. Sci. 46, 109 (2004). https://doi.org/10.1016/S0010-938X(02)00257-3
  8. M. Reid, J. Punch, C. Ryan, L. F. Garfias, S. Belochapkine, J. P. Franey, G. E. Derkits, Jr., and W. D. Reents, Jr. J. Electrochem. Soc. 154, C209 (2007). https://doi.org/10.1149/1.2436612
  9. M. J. Willey, U. Emekli, and A. C. West, J. Electrochem. Soc. 155, D302 (2008). https://doi.org/10.1149/1.2837857
  10. M. Kim, F. F. Sun, J. Lee, Y. K Hun, and D. Lee, Surf. Coat. Tech. doi:10.106/j.surfcoat.2010.09.049.
  11. M. Kim, H. R. Cha, C. Choi, H. S. Kim, and D. Lee, Kor. J. Met. Mater. 48, 757 (2010).
  12. D. Balaraman, S. K. Bhattacharya, F. Ayazi, and J. Papapolymerou, IEEE MTT-S, 1225 (2002).
  13. D. M. Fang, Y. Zhou, X. N. Wang, and X. L. Zhao, Microsyst. Technol. 12, 79 (2007).
  14. M. Woytasik, J. Moulin, E. Martincic, A. L. Coutrot, and E. Dufour-Gergam, Microsyst. Technol. 14, 951 (2008). https://doi.org/10.1007/s00542-007-0467-1
  15. Z. H. Cao, P. Y. Li, H. M. Lu, Y. L. Huang, and X. K. Meng, J. Phys. D: Appl. Phys. 42, 065405 (2009). https://doi.org/10.1088/0022-3727/42/6/065405
  16. T. Tsuru and Y. Shibutani, Physical Review B 75, 035415 (2007) https://doi.org/10.1103/PhysRevB.75.035415
  17. Yuan-Ching Lin and Dar-Jen Pen, Nanotechnology 18, 395705 (2007). https://doi.org/10.1088/0957-4484/18/39/395705
  18. Y. W. Denis and S. Frans, J. Appl. Phys. 95, 2991 (2004). https://doi.org/10.1063/1.1644634
  19. G. M. Pharr and W. C. Oliver, MRS Bulletin 17, 7 (1992).
  20. K. D. Song, K. B. Kim, S. H. Han, and H. Lee, Electrochem. Solid-State. Lett. 7, C20 (2004). https://doi.org/10.1149/1.1635091
  21. B. Z. Cui, K. Han, Y. Xin, D. R. Waryoba, and A. L. Mbaruku, Acta Mater. 55, 4429-4438 (2007). https://doi.org/10.1016/j.actamat.2007.04.009
  22. S. H. Hong, K. S. Kim, Y. M. Kim, J. H. Hahn, C. S. Lee, and J. H. Park, Composites Sci. Tech. 65, 1401 (2005). https://doi.org/10.1016/j.compscitech.2004.12.010
  23. M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, and M. Mabuchi, Mater. Sci. Eng. A 457, 120 (2007). https://doi.org/10.1016/j.msea.2006.12.101
  24. S. Chang and T. Chang, J. Appl. Phys. 101, 033507 (2007). https://doi.org/10.1063/1.2432873
  25. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metal. 23, 1679 (1989). https://doi.org/10.1016/0036-9748(89)90342-6
  26. N. E. Dowling, Mechanical Behavior of Materials, 2nd ed. Prentice Hall Intl, inc. Ch. 8 (1999).
  27. Kathleen Mills and ASM, Metals Handbook, vol. 12 Fractography (1987).