• Title/Summary/Keyword: composites and hardness

Search Result 474, Processing Time 0.021 seconds

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix (Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

A novel hemispherical microbond specimen for evaluating the interfacial shear strength of single fiber composite (복합재료의 계면 전단강도를 평가하기 위한 새로운 반구형 미소접합 시험편)

  • Park, Joo-Eon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.25-30
    • /
    • 2008
  • A hemispherical microbond specimen adhered onto single carbon fiber has been proposed for evaluating the interfacial shear strength between epoxy and carbon fiber. Hemispherical microbond specimens showed low interfacial shear strength data and its small standard deviation as compared with the droplet one, which seemed to be caused by the reduction of the meniscus effects and of the stress concentration in the region contacting with the tip of pin hole. In comparison with the droplet specimen the hemispherical specimen showed the shear stress distribution similar to the cylindrical one in that low stress concentration arose around the contacting region. Average interfacial shear strength obtained by the hemispherical ones represented a good correlation with the hardness of the epoxy matrix.

Tensile Characteristics of Silane-modified MMT/epoxy Nanocomposites (실란처리 된 MMT/에폭시 나노복합재의 인장특성)

  • Ha, Sung-Rok;Chung, Hyup-Jae;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.103-107
    • /
    • 2006
  • It is well-known that the mechanical properties of MMT(montmorillonite) nanocomposites are better than those of conventional composites. In this study, tensile tests were performed to determine the effect of silane modification of MMT and its weight ratio on the tensile properties of MMT/epoxy nanocomposites. It was found that the tensile strength and the elastic modulus of MMT/epoxy nanocomposites increased with increasing weight ratio of MMT. The elastic modulus of silane-modified MMT/epoxy nanocomposites was higher than that of untreated MMT/epoxy nanocomposites, irrespective of weight ratio.

A STUDY ON TOOTHBRUSH ABRASION OF CERVICAL RESTORATIVE MATERIALS (치경부 심미수복재의 잇솔질 마모에 관한 연구)

  • Baik, Byeong-Ju;Yang, Jeong-Sook;Lee, Doo-Cheol;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.118-128
    • /
    • 2001
  • This study was performed to evaluate the toothbrush abrasion characteristics of seven commercially available light-cured cervical restorative materials one resin-modified glass-ionomer material(Fuji II LC) three polyacid-modified composites(Compoglass, Dyract, F2000), and three light-cured composites(Heliomolar, Palpique Estelite, UniFil F). All samples were stored in distilled water at $37^{\circ}C$ for 10 days. 2.0N of weight was loaded during the test and the abraded surfaces were examined with profilometer and SEM after 100,000 cycles. The results obtained were summarized as follows; 1. The highest hardness value of 79.7 was observed in the FT group and the lowest value of 20.0 was observed in the HM group. Results of Tukey test showed that an overall significant difference was indicated except the CG and DR groups(p<0.05). 2. The highest surface roughness was observed in the FL group and the lowest was observed in the UF group. Results of Tukey test showed the significant difference between the FL or FT and UF groups(p<0.05). 3. Statistically higher abrasion and surface roughness were observed for the dentifrice of paste type, Perio A+, than for that of gel paste type, Tom & Jerry. 4. The surface roughness values increased on the abraded surfaces because of the protrusion of filler particles due to selective removal of matrix resin.

  • PDF

Fabrication and Ion Irradiation Characteristics of SiC-Based Ceramics for Advanced Nuclear Energy Systems (차세대 원자력 시스템용 탄화규소계 세라믹스의 제조와 이온조사 특성 평가)

  • Kim, Weon-Ju;Kang, Seok-Min;Park, Kyeong-Hwan;Kohyama Akira;Ryu, Woo-Seog;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.575-581
    • /
    • 2005
  • SiC-based ceramics are considered as candidate materials for the advanced nuclear energy systems such as the generation IV reactors and the fusion reactors due to their excellent high-temperature strength and irradiation resistance. The advanced nuclear energy systems and their main components adopting ceramic composites were briefly reviewed. A novel fabrication method of $SiC_f/SiC$ composites by introducing SiC whiskers was also described. In addition, the charged-particle irradiation ($Si^{2+}$ and $H^{+}$ ion) into CVD SiC was carried out to simulate the severe environments of the advanced nuclear reactors. SiC whiskers grown in the fiber preform increased the matrix infiltration rate by more than $60\%$ compared to the conventional CVI process. The highly crystalline and pure SiC showed little degradation in hardness and elastic modulus up to a damage level of 10 dpa at $1000^{\circ}C$.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiB_2$ Composite

  • Kim, Hyun-Jin;Lee, Soo-Whon;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 1999
  • $Si_3N_4$-$TiB_2$ with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ additives was hot pressed in a flowing $N_2$ environment with varying $TiB_2$ content from 10 to 50 vol%. Variations of mechanical (hardness, fracture toughness, and flexual strength), and tribological properties as a function of $TiB_2$ content were investigated. As the content of $TiB_2$ increased, relative density decreased due to the chemical reaction of $TiB_2$in $N_2$ environment. The reduction of density causes mechanical properties to be degraded with an increase of $TiB_2$ in $Si_3N_4$. Tribological properties were dependent of microstructure as well as mechanical properties, however, they were degraded strongly by the chemical reaction of $Si_3N_4$-$TiB_2$ during hot pressing in $N_2$ environment. SEM and TEM observations, and X-ray diffraction analysis that the chemical reaction products at the interface are TiCN, Si, and $SiO_2$. Also, the comparison of XRD patterns of the $Si_3N_4$-40 vol% $TiB_2$ composites hot pressed at $1,750^{\circ}C$ for 1 hour between in $N_2$ and in Ar gas was made. The XRD peaks of Si and $SiO_2$ were not found in Ar, but still a weak peak of TiCN was presented.

  • PDF

EFFECT OF PROCESS VARIABLES ON FRICTION STIRRED MICROSTRUCTURE AND SURFACE HARDNESS OF AZ31 MAGNESIUM ALLOY

  • JAE-YEON KIM;JUNG-WOO HWANG;SEUNG-MI LEE;CHANG-YOUNG HYUN;IK-KEUN PARK;JAI-WON BYEON
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.907-911
    • /
    • 2019
  • Effects of various friction stir processing (FSP) variables on the microstructural evolution and microhardness of the AZ31 magnesium alloy were investigated. The processing variables include rotational and travelling speed of the tool, kind of second phase (i.e., diamond, Al2O3, and ZrO2) and groove depth (i.e., volume fraction of second phase). Grain size, distribution of second phase particle, grain texture, and microhardness were analyzed as a function of the FSP process variables. The FSPed AZ31 composites fabricated with a high heat input condition showed the better dispersion of particle without macro defect. For all composite specimens, the grain size decreased and the microhardness increased regardless of the grooved depth compared with that of the FSPed AZ31 without strengthening particle, respectively. For the AZ31/diamond composite having a grain size of about 1 ㎛, microhardness (i.e., about 108 Hv) was about two times higher than that of the matrix alloy (i.e., about 52 Hv). The effect of second phase particle on retardation of grain growth and resulting hardness increase was discussed.

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature (저온환경에서 NR/BR 블렌드 조성비 및 오일함량이 방진고무재료의 기계적 특성에 미치는 영향)

  • Kim, Wan-Doo;Kim, Wan-Soo;Woo, Chang-Soo;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • New compounds were made using various NR/BR blend ratio and oil content to improve mechanical properties of rubber isolator at low temperature. Mechanical properties were investigated as a function of NR/BR blend ratio and oil content. Hardness and tensile modulus generally increased, but tensile strength and elongation at break decreased with increasing BR content. Hardness, tensile modulus and tensile strength decreased, but elongation at break were nearly the same with increasing oil content. The glass transition temperature of NR and BR were found to be $-50^{\circ}C$ and $-90^{\circ}C$ respectively based on the abrupt drops in storage elastic modulus and peak of loss factor. Two distinct transition temperature were observed in NR/BR blend compounds and each transition point was not affected by blend level indicating incompatible nature of NR/BR blend.