• Title/Summary/Keyword: composites and hardness

Search Result 474, Processing Time 0.021 seconds

Mechanical properties of bamboo-epoxy composites a structural application

  • Biswas, Sandhyarani
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.221-231
    • /
    • 2012
  • In this study, the physical and mechanical properties of bamboo fiber reinforced epoxy composites were studied. Composites were fabricated using short bamboo fiber at four different fiber loading (0 wt%, 15 wt%, 30 wt% and 45 wt%). It has been observed that few properties increases significantly with respect to fiber loading, however properties like void fraction increases from 1.71% to 5.69% with the increase in fiber loading. Hence, in order to reduce the void fraction, improve hardness and other mechanical properties silicon carbide (SiC) filler is added in bamboo fiber reinforced epoxy composites at four different weight percentages (0 wt%, 5 wt%, 10 wt% and 15 wt%) by keeping fiber loading constant (45 wt%). The significant improvement of hardness (from 46 to 57 Hv) at 15 wt%SiC, tensile strength (from 10.48 to 13.44 MPa) at 10 wt% SiC, flexural strength (from 19.93 to 29.53 MPa) at 5 wt%SiC and reduction of void fraction (from 5.69 to 3.91%) at 5 wt%SiC is observed. The results of this study indicate that using particulate filled bamboo fiber reinforced epoxy composites could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional bamboo composites. Finally, SEM studies were carried out to evaluate fibre/matrix interactions.

A Study on Property Change with Mixing Ratio in NBR/PVC Composites

  • Li, Xiang Xu;Jeong, Hyung Seok;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.48-51
    • /
    • 2018
  • 10, 20, 30, and 40% of polyvinyl chloride (PVC) were added to nitrile butadiene rubber (NBR) to modify the latter. The NBR/PVC composites containing pure NBR were synthesized to investigate properties, such as crosslinking density, hardness, tensile strength, abrasion resistance, heat resistance, solvent resistance, and filler dispersion. The experimental result revealed a decrease in crosslinking density and heat resistance with increase in the PVC content. In contrast, addition of PVC to NBR resulted in enhancement of hardness, tensile strength, solvent resistance, and filler dispersion.

The Effect of Zirconia Particle Size on Mechanical Properties of Zirconia Toughened Alumina (ZrO2의 분말크기가 ZTA의 기계적 물성에 미치는 영향)

  • Sohn, Jeongho;Shin, Hyung-Sup
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.652-657
    • /
    • 2014
  • The purpose of this study was to investigate the microstructures and mechanical properties of zirconia toughened alumina (ZTA) ceramics prepared from two kinds of 3Y-TZP powders. ZTA composites were prepared by adding two kinds of 3Y-TZP powders, 3YEH (BET = $7m^2/g$) and 3YEM (BET = $16m^2/g$), to ${\alpha}$-alumina in the range of 5-25 wt%. It was found that the microstructure photographs of the ZTA composites showed that the average grain size of alumina decreased as the content of zirconia increased. In our present study, specimens containing 3YEM zirconia exhibited smaller grain sizes compared to those of 3YEH zirconia. The Vickers hardness of the ZTA composites that were sintered at $1600^{\circ}C$ for 2 hrs was found to smoothly decrease with increasing zirconia content because of the low Young modulus in zirconia. The Vickers hardness of the ZTA containing 3YEH zirconia was greater than that of the 3YEM zirconia. In substance, the fracture toughness ($K_{1c}$) of the ZTA composites increased as the content of zirconia increased. The fracture toughness ($K_{1c}$) of ZTA containing 3YEM zirconia was greater than that of 3YEH zirconia.

Effect of Fabricating Temperature on Hardness Characteristics of $Nb/MoSi_2$ Laminate Composite ($Nb/MoSi_2$ 적층복합재료의 경도특성에 미치는 제조온도의 영향)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.37-44
    • /
    • 1999
  • Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $Nb/MoSi_2$ laminate composites composed of $MoSi_2$ powder and Nb sheets were fabricated by the hot press. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like(Nb, Mo)$SiO_2\;and\;Nb2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature.

  • PDF

Fabrication of Aluminum Alloy Composites Reinforced with SiC whisker an $Al_2O_3-SiO_2$ Short Fiber by Squeeze Casting (용탕단조에 의한 $Al_2O_3-SiO_2$ 단섬유 및 SiC whisker강화 알루미늄 합금기 복합재료의 제조)

  • Hong, Sung-Kil;Yun, Jung-Yul;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 1997
  • SiC whisker and $Al_2O_3-SiO_2$ short fiber reinforced AC8A, AC8B and AC8B(J) marix composites were fabricated by squeeze casting method. Preform deformation, change of reinforcement volumefraction and formation of macro-segregation in two composites were investigated by using micro Vickers hardness test, analysis of macro and micro structures with OM, SEM and EDAX. $Al_2O_3-SiO_2$ short fiber preform manufactured with 5% $SiO_2$ binder in this study was considerably deformed and cracked, nevertheless, the short fibers were distributed homogeneously in the composites. In SiC whisker reinforced composites, on the other hand, preform deforming and cracking were not occurred, however, macro segregation zone formed along the infiltration routes by interface reaction during infiltration of molten metal into the preform was observed at center-low area in the composites. The decrease of hardness in the macro segregation zone resulted from the depletion of Si and Mg atoms.

  • PDF

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Effect of Volume Fraction on Mechanical and Fatigue Crack Growth Properties of SiC Particle Reinforced AL Alloy Composites (체적비가 $SiC_{p}$/AL 복합재료의 기계적 및 피로균열진전 특성에 미치는 영향)

  • Gwon, Jae-Do;An, Jeong-Ju;Mun, Yun-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1301-1308
    • /
    • 1996
  • In order to save the energy and protect the environment, it were studied about ecomaterials with the developed countries as central figure. In the Metal Matrix Composites(MMCs), this trends appeared the development of the MMCs which had excellent mechanical properties in spite of the low volume fraction of reinforcement. Therefore, in this study, fatigue crack growth test, tensile and hardness test were conducted in order to investigate the mechanical and fatigue properties of 5 %, and 10 % $SiC_{p}$/Al composites. As the results, in the tensile and hardness test, tensile strength and hardness increased but fatigue crack growth rate decreased with $SiC_{p}$/Al volume fraction. And in the view of fatigue failured surface through the SEM, fatigue crack initiated around the SiC particle and in low $\Delta{K}$ regions, fatigue creck detoured the SiC particle but crack propagated through the SiC particle in the high $\DeltaK$ regions.

Comparative study on carboxylated styrene butadiene rubber composites reinforced by hybrid fillers of rice bran carbon and graphite carbon

  • Fan, Yuan;Li, Qingyuan;Li, Xiangxu;Lee, Dam hee;Cho, Ur Ryong
    • Carbon letters
    • /
    • v.27
    • /
    • pp.72-80
    • /
    • 2018
  • In the present work, a comparative study of the mechanical behavior of two series of elastomeric composites, based on carboxylated styrene butadiene rubber (X-SBR) and reinforced with rice bran carbon (RBC) and graphite, is reported. Hybrid composites of X-SBR filled with RBC-graphite were also investigated in terms of the cure characteristics, hardness, tensile properties, abrasion resistance, and swelling. It was observed that the cure times decreased with the incorporation of a carbon filler whereas the torque difference, tensile strength, tensile modulus, hardness, and swelling resistance increased compared to the neat X-SBR revealing a favorable characteristic of crosslinking. Dynamic rheological analysis showed that the G' values of the composites, upon the addition of RBC-graphite, were changed to some extent. This demonstrates that the presence of a strongly developed network of fillers will ensure a reinforcing characteristic in a polymer matrix.

Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process (DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성)

  • Yu-Jeong An;Ju-Yeon Han;Hyunjoo Choi;Se-Eun Shin
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.262-267
    • /
    • 2023
  • Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2015
  • $TiH_2$ nanopowder was made by high energy ball milling. The milled $TiH_2$ and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the $TiH_2$-CNT mixture produced a Ti-TiC composite according to the reaction ($0.92TiH_2+0.08CNT{\rightarrow}0.84Ti+0.08TiC+0.92H_2$, $0.84TiH_2+0.16CNT{\rightarrow}0.68Ti+0.16TiC+0.84H_2$). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.