• Title/Summary/Keyword: composite sensor

Search Result 541, Processing Time 0.024 seconds

Technology Development for Composite Sensor System of Automatic Guided Vehicle(AGV) Using RFID/IMU/Encoder/Proximity Sensor (RFID/IMU/Encoder/근접센서를 활용한 무인지게차의 복합센서 시스템 연구)

  • Shin, Hee-Young;Choi, Hyeung-Sik;Kim, Hwan-Seong;Jung, Sung-Hun
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.309-313
    • /
    • 2013
  • This paper is about a complex sensor system of an automatic guided vehicle(AGV) for loading and unloading payloads. For the AGV to approach to the target rack for loading and unloading the payload, a way to identify the position and orientation was studied. To identify the position and orientation of the AGV accurately, a complex sensor system composed of RFID, IMU, and limit sensors was developed, and the performance of each sensor was undertaken. A model AGV was constructed, and the good performance of the developed complex sensor system was verified through performance experiments.

A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor (압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구)

  • Kim, Sung Yong;Kim, Hyun Ho;Choi, Baek Gyu;Kang, In Hyuk;Lee, Ill Yeong;Kang, In Pil
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

A study on the fatigue behavior of optical fiber sensors embedded in smart composite structures (지능형 복합재 구조물에 삽입된 광섬유센서의 피로거동에 관한 연구)

  • Jang, Tae-Seong;Kim, Ho;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.579-587
    • /
    • 1998
  • In this study, fatigue behavior of the optical fiber sensor embedded in composite laminate was investigated. Static tensile and fatigue tests were performed for three types of laminated composite specimens with embedded optical fiber sensor in the neutral plane ; [0/sub 6//OF/0/sub 6/]/sub T/, [0/sub 2//90/sub 4//OF/90/sub 4//0/sub 2/]/sub T/ and [0/sub 3//90/sub 3//OF/90/sub 3//0/sub 3/]/sub T/. The fracture of the embedded optical fiber sensor was detected by the intensity drop off of laser signal transmitted through the optical fiber sensors embedded within laminated composite specimen. The maximum fatigue stress applied to laminated specimen was compared with the average tensile stress at which the fracture of the embedded optical fiber within the laminate occurred under static tensile loading. From the experiments, firstly it is observed that the decrease in the life of optical fiber sensors embedded within unidirectional-ply laminate by the fatigue loading is relatively small compared to that of cross-ply laminate. Secondly, the optical fiber embedded in unidirectional-ply laminate is fractured by the fatigue damage due to the growth of internal defects of optical fiber, however the optical fiber embedded in cross-ply laminate is fractured by the growth of transverse matrix crack.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

FATIGUE CRACK GROWTH MONITORING OF CRACKED ALUMINUM PLATE REPAIRED WITH COMPOSITE PATCH USING EMBEDDED OPTICAL FIBER SENSORS (광섬유센서를 이용한 복합재 패치수리된 알루미늄판의 균열관찰)

  • 서대철;이정주;김상훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.250-253
    • /
    • 2001
  • Recently, based on the smart structure concept, optical fiber sensors have been increasingly applied to monitor the various engineering and civil structural components. Repairs based on adhesively bonded fiber reinforce composite patches are more structurally efficient and much less damaging to the parent structure than standard repairs based on mechanically fastened metallic patches. As a result of the high reinforcing efficiency of bonded patches fatigue cracks can be successfully repaired. However, when such repairs are applied to primary structures, it is needed to demonstrate that its loss can be immediately detected. This approach is based on the "smart patch" concept in which the patch system monitors its own health. The objective of this study is to evaluate the potentiality of application of transmission-type extrinsic Fabry-Perot optical fiber sensor (TEFPI) to the monitoring of crack growth behavior of composite patch repaired structures. The sensing system of TEFPI and the data reduction principle for the detection of crack detection are presented. Finally, experimental results from the tests of center-cracked-tension aluminum specimens repaired with bonded composite patch is presented and discussed.

  • PDF

Feasibility Check of Textile Sensor Made of P(VDF-TrFE) for Structural Health Monitoring of Composite Structures (복합재료 구조물의 건전성 모니터링을 위한 P(VDF-TrFE) 직물센서의 가능성 평가)

  • Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.126-131
    • /
    • 2017
  • For structural health monitoring of a complex shaped structure a new sensor that can compensate for the drawbacks of the current sensors such as brittleness is needed and the sensor should be highly flexible and durable. In this study a textile sensor made of polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) which is a type of electroactive polymer was fabricated. And the textile sensors were applied to a complex shaped structure (an egg-box panel made of carbon/epoxy composite) for checking their feasibility of structural health monitoring. To correlate the collapse response with failure mechanisms of the structure the multiply-interrupted compressive test was carried out. During the test, the textile sensors succeeded to prove their applicability for damage detection (crack initiation) by generating electric voltages (0.05 V-0.25 V) in the real time.

Highly sensitive xylene sensors using Fe2O3-ZnFe2O4 composite spheres

  • Chan, Jin Fang;Jeon, Jae Kyoung;Moon, Young Kook;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.191-195
    • /
    • 2021
  • Pure ZnFe2O4 and Fe2O3-ZnFe2O4 hetero-composite spheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn- and Fe-nitrates. Additionally, the sensing characteristics of these spheres in the presence of 5 ppm ethanol, benzene, p-xylene, toluene, and CO (within the temperature range of 275-350 ℃) were investigated. The Fe2O3-ZnFe2O4 hetero-composite sensor with a cation ratio of [Zn]:[Fe]=1:3 exhibited a high response (resistance ratio = 140.2) and selectivity (response to p-xylene/response to ethanol = 3.4) to 5 ppm p-xylene at 300 ℃, whereas the pure ZnFe2O4 sensor showed a comparatively lower gas response and selectivity. The reasons for the superior response and selectivity to p-xylene in Fe2O3-ZnFe2O4 hetero-composite sensor were discussed in relation to the electronic sensitization due to charge transfer at Fe2O3-ZnFe2O4 interface and Fe2O3-induced catalytic promotion of gas sensing reaction. The sensor can be used to monitor harmful volatile organic compounds and indoor air pollutants.

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.377-393
    • /
    • 2016
  • The present work develops an expert system for detecting and predicting the crude oil types and properties at normal temperature ${\theta}=25^{\circ}C$, by evaluating the dielectric properties of the fluid transfused inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) technique, then used the data measurements from ECS to predict the types of the other crude oil transfused inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus validating the accuracy and reliability of the proposed technique.

Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites

  • Nam, I.W.;Souri, H.;Lee, H.K.
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.217-231
    • /
    • 2016
  • The present work aims to develop piezoresistive sensors of excellent piezoresistive response attributable to change in nanoscale structures of multi-wall carbon nanotube (MWNT) embedded in cement. MWNT was distributed in a cement matrix by means of polymer wrapping method in tandem with the ultrasonication process. DC conductivity of the prepared samples exhibited the electrical percolation behavior and therefore the dispersion method adopted in this study was deemed effective. The integrity of piezoresistive response of the sensors was assessed in terms of stability, the maximum electrical resistance change rate, and sensitivity. A composite sensor with MWNT 0.2 wt.% showed the lowest stability and sensitivity, while the maximum electrical resistance change rate exhibited by this sample was the highest (96 %) among others and even higher than those found in the literature. This observation was presumably attributed by the percolation threshold and the tunneling effect. As a result of the MWNT content (0.2 wt.%) of the sensor being near the percolation threshold (0.25 wt.%), MWNTs were close to each other to trigger tunneling in response of external loading. The sensor with MWNT 0.2 wt.% was able to maintain the repeatable sensing capability while sustaining a vehicular loading on road, demonstrating the feasibility in traffic flow sensing application.