DOI QR코드

DOI QR Code

Feasibility Check of Textile Sensor Made of P(VDF-TrFE) for Structural Health Monitoring of Composite Structures

복합재료 구조물의 건전성 모니터링을 위한 P(VDF-TrFE) 직물센서의 가능성 평가

  • Received : 2017.03.20
  • Accepted : 2017.04.28
  • Published : 2017.04.30

Abstract

For structural health monitoring of a complex shaped structure a new sensor that can compensate for the drawbacks of the current sensors such as brittleness is needed and the sensor should be highly flexible and durable. In this study a textile sensor made of polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) which is a type of electroactive polymer was fabricated. And the textile sensors were applied to a complex shaped structure (an egg-box panel made of carbon/epoxy composite) for checking their feasibility of structural health monitoring. To correlate the collapse response with failure mechanisms of the structure the multiply-interrupted compressive test was carried out. During the test, the textile sensors succeeded to prove their applicability for damage detection (crack initiation) by generating electric voltages (0.05 V-0.25 V) in the real time.

복잡한 형상의 구조 건전성 모니터링을 위해서는 높은 취성 등 기존 센서의 단점을 보완 할 수 있는 매우 유연하고 내구성이 확보된 센서가 필요하다. 본 연구에서는 전기활성고분자의 한 종류인 Polyvinylidene fluoride trifluoroethylene (PVDF-TrFE)를 사용하여 직물센서를 제작하였다. 또한 제작된 직물센서를 복잡한 형상을 가지는 탄소섬유/에폭시 복합재료 구조물에 적용하여 구조 건전성 모니터링을 위한 도구로써 활용 가능성을 평가하였다. 복합재료 구조물의 손상 반응과 파손 메커니즘을 분석하기 위해 다중간헐적 압축시험을 수행하였다. 시험 과정에서 복합재료 구조물에 삽입된 직물센서는 전기적 신호를 발생 (0.05 V-0.25 V)하며 실시간으로 균열발생과 균열위치를 감지해냈다.

Keywords

References

  1. Balageas, D., et al., Structural Health Monitoring, Wiley-ISTE, 2006.
  2. Chan, T.H.T., et al., "Fiber Bragg Grating Sensors for Structural Health Monitoring of Tsing Ma Bridge: Background and Experimental Observation", Engineering Structures, Vol. 28, 2006, pp. 648-659. https://doi.org/10.1016/j.engstruct.2005.09.018
  3. Jayant, S., and Inderjit, C., "Fundamental Understanding of Piezoelectric Strain Sensors", Journal of Intelligent Material Systems and Structures, Vol. 11, 2000, pp. 246-257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
  4. Bae, J.H., et al., "Design and Fabrication of a Metal-composite Hybrid Wheel with a Friction Damping Layer for Enhancement of Ride Comfort", Composite Structures, Vol. 133, 2015, pp. 576-584. https://doi.org/10.1016/j.compstruct.2015.07.113
  5. Mouritz, A.P., et al., "Review of Advanced Composite Structures for Naval Ships and Submarines", Composite Structures, Vol. 53, 2001, pp. 21-42. https://doi.org/10.1016/S0263-8223(00)00175-6
  6. Jovan, O., et al., "Lightweight Design and Crash Analysis of Composite Frontal Impact Energy Absorbing Structures", Composite Structures, Vol. 94, 2012, pp. 423-430. https://doi.org/10.1016/j.compstruct.2011.08.005
  7. Konk, H.P., et al., "Piezoelectric Fiber Composite Transducers for Health Monitoring in Composite Structure", Sensors and Actuators A: Physical, Vol. 194, 2013, pp. 84-94. https://doi.org/10.1016/j.sna.2012.12.039
  8. Rekik, H., et al., "Dielectric Relaxation Behaviour in Semi-crystalline Polyvinylidene Fluoride (PVDF)/$TiO_2$ Nanocomposites", Composites Part B: Engineering, Vol. 45, 2013, pp. 1199-206. https://doi.org/10.1016/j.compositesb.2012.08.002
  9. Yang, C., et al., "Effect of Coupling Agents on the Dielectric Properties of CaCu3Ti4O12/PVDF Composites", Composites Part B: Engineering, Vol. 50, 2013, pp. 180-186. https://doi.org/10.1016/j.compositesb.2013.02.006
  10. Saghafi, H., et al., "The Effect of PVDF Nanofibers on Mode-I Fracture Toughness of Composite Materials", Composites Part B: Engineering, Vol. 72, 2015, pp. 213-216. https://doi.org/10.1016/j.compositesb.2014.12.015
  11. Bae, J.H., et al., "Effect of Water Absorption on the Mechanical Properties of Poly(vinylidene fluoride-trifluoroethylene) Copolymer Films", Polymer Engineering & Science, Vol. 54, 2014, pp. 2654-2659. https://doi.org/10.1002/pen.23818
  12. Xia, F., et al., "High Electromechanical Responses in a Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Terpolymer", Advanced Materials, Vol. 14, 2002, pp. 1574. https://doi.org/10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-#
  13. Zhang, S.H., et al., "Normal Ferroelectric to Ferroelectric Relaxor Conversion in Fluorinated Polymers and the Relaxor Dynamics", Journal of Materials Science, Vol. 41, 2006, pp. 271-280. https://doi.org/10.1007/s10853-006-6081-2
  14. Liu, X.Q., et al., "Reinforcement and Plasticization of PMMA Grafted MWCNTs for PVDF Composites", Composites Part B: Engineering, Vol. 53, 2013, pp. 9-16. https://doi.org/10.1016/j.compositesb.2013.04.032
  15. Zhang, S.H., et al., "Relaxor Ferroelectric Polymers", Ferroelectric, Vol. 339, 2006, pp. 1723-1731.
  16. Siponkoski, T., et al., "Electromechanical Properties of PZT/P(VDF-TrFE) Composite Ink Printed on a Flexible Organic Substrate", Composites Part B: Engineering, Vol. 80, 2015, pp. 217-222. https://doi.org/10.1016/j.compositesb.2015.05.018
  17. Sharma, T., et al., "Flexible Thin-film PVDF-TrFE Based Pressure Sensor for Smart Catheter Applications", Annals of Biomedical Engineering, Vol. 41, 2013, pp. 744-751. https://doi.org/10.1007/s10439-012-0708-z
  18. Corres, J.M., et al., "Optical Fiber Humidity Sensors Using PVDF Electrospun Nanowebs", IEEE Sensors Journal, Vol. 11, 2011, pp. 2383-2387. https://doi.org/10.1109/JSEN.2011.2123881
  19. Puthillath, P., et al., "Hybrid Inversion of Elastic Moduli of Composite Plates from Ultrasonic Transmission Spectra Using PVDF Plane Wave Sensor", Composites Part B: Engineering, Vol. 41, 2010, pp. 8-16.
  20. Georgousis, G., et al., "Strain Sensing in Polymer/carbon Nanotube Composites by Electrical Resistance Measurement", Composites Part B: Engineering, Vol. 68, 2015, pp. 162-169. https://doi.org/10.1016/j.compositesb.2014.08.027
  21. Butler, R., and Rao, V., "Optimal Control of Infinite-order Smart Composite Structural Systems Using Distributed Sensors", Composites Part B: Engineering, Vol. 4, 1994, pp. 577-89. https://doi.org/10.1016/0961-9526(94)90102-3
  22. Nunes-Pereira, J., et al., "Energy Harvesting Performance of $BaTiO_3$/poly(vinylidene fluoride-trifluoroethylene) Spin Coated Nanocomposites", Composites Part B: Engineering, Vol. 72, 2015, pp. 130-136. https://doi.org/10.1016/j.compositesb.2014.12.001
  23. Seidel, S.M., et al., "PVDF-HFP/ether-modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries", Chemical Communications, Vol. 51, 2015, pp. 12048-12051. https://doi.org/10.1039/C5CC04424C
  24. Ma, M.M., et al., "Bio-inspired Polymer Composite Actuator and Generator Driven by Water Gradients", Science, Vol. 339, 2013, pp. 186-189. https://doi.org/10.1126/science.1230262
  25. Bae, J.H., and Chang, S.H., "A New Approach to Fabricate Poly(vinylidene fluoride-trifluoroethylene) Fibers Using a Torsionstretching Method and Characterization of Their Piezoelectric Properties", Composites Part B: Engineering, Vol. 99, 2016, pp. 112-120. https://doi.org/10.1016/j.compositesb.2016.06.037
  26. Chung, J.G., et al., "Deformation and Energy Absorption of Composite Egg-box Panels", Composites Science and Technology, Vol. 67, 2007, pp. 2342-2349. https://doi.org/10.1016/j.compscitech.2007.01.020
  27. Yoo, S.H., and Chang, S.H., "An Experimental Study on Energy Absorbing Structures Made of Fabric Composites", Composite Structures, Vol. 86, 2008, pp. 211-219. https://doi.org/10.1016/j.compstruct.2008.03.010
  28. Sorichetti, P.A., and Santiago, G.D., "Modeling Thin Film Piezoelectric Polymer Ultrasonic Sensors", Review of Scientific Instruments, Vol. 85, 2014, pp. 1-7.