• Title/Summary/Keyword: composite sensor

Search Result 541, Processing Time 0.023 seconds

Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구)

  • Jang, Byeong-Wook;Park, Sang-Oh;Lee, Yeon-Gwan;Kim, Chun-Gon;Park, Chan-Yik;Lee, Bong-Wan
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Low-velocity impact can cause various damages which are mostly hidden inside the laminates or occur in the opposite side. Thus, these damages cannot be easily detected by visual inspection or conventional NDT systems. And if they occurred between the scheduled NDT periods, the possibilities of extensive damages or structural failure can be higher. Due to these reasons, the built-in NDT systems such as real-time impact monitoring system are required in the near future. In this paper, we studied the impact monitoring system consist of impact location detection and damage assessment techniques for composite flat and stiffened panel. In order to acquire the impact-induced acoustic signals, four multiplexed FBG sensors and high-speed FBG interrogator were used. And for development of the impact and damage occurrence detections, the neural networks and wavelet transforms were adopted. Finally, these algorithms were embodied using MATLAB and LabVIEW software for the user-friendly interface.

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

NO Gas Sensing Properties of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성)

  • Park, Seong-Yong;Jung, Hoon-Chul;Ahn, Eun-Seong;Nguyen, Le Hung;Kang, Youn-Jin;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.655-659
    • /
    • 2008
  • The NO gas sensing properties of ZnO-carbon nanotube (ZnO-CNT) composites fabricated by the coaxial coating of single-walled CNTs with ZnO were investigated using pulsed laser deposition. Upon examination, the morphology and crystallinity of the ZnO-CNT composites showed that CNTs were uniformly coated with polycrystalline ZnO with a grain size as small as 5-10 nm. Gas sensing measurements clearly indicated a remarkable enhancement of the sensitivity of ZnO-CNT composites for NO gas compared to that of ZnO films while maintaining the strong sensing stability of the composites, properties that CNT-based sensing materials do not have. The enhanced gas sensing properties of the ZnO-CNT composites are attributed to an increase in the surface adsorption area of the ZnO layer via the coating by CNTs of a high surface-to-volume ratio structure. These results suggest that the ZnO-CNT composite is a promising template for novel solid-state semiconducting gas sensors.

NO Gas Sensing Characteristics of Layered Composites of Carbon Nanotubes Coated with Al-Doped ZnO (탄소나노튜브를 알루미늄이 첨가된 산화아연으로 코팅한 층상 복합체의 일산화질소 가스 감지 특성)

  • Ahn, Eun-Seong;Jung, Hoon-Chul;Nguyen, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.631-636
    • /
    • 2009
  • We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200${^{\circ}C}$ and a low NO gas detection limit of 0.2 ppm in dry air.

Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes (Au와 탄소나노튜브 복합체 전극의 연성 향상)

  • Woo, Jung-Min;Jeon, Joo-Hee;Kang, Ji-Yeon;Lee, Tae-Il;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.133-137
    • /
    • 2011
  • Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.

Experimental Study on Pressures Changes on Infilling Soil and Geotextile Drain in Circular Acrylic Tube Structure (토사 주입과 배수 시 원형 아크릴 튜브 구조체의 압력 변화에 대한 실험적 연구)

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Lee, Jang-Baek;Park, Tae-Woong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.86-94
    • /
    • 2015
  • A series of injection and drainage test were conducted on an circular acrylic tube to investigate the pressure generated by the accumulated fill materials inside a circular acrylic tube structure. The acrylic tube was filled by means of gravity filling with a slurry material having an average water content of 700%. The water head during the filling process was 1.8m and the bottom pressure during initial filling was 20.18kPa. The recorded stress at the sides of the acrylic tube was 17.89kPa during the filling process and was reduced to 13.58kPa during the leaving process. Continuous drainage of the acrylic tube has greatly influenced the stresses around the tube structure. As the water is gradually allowed to overflow, the generated pressure at the topmost pressure sensor of the tube was reduced further to 2.17kPa. Eventually, the initially liquid state slurry material transforms into plastic state after water has dissipated and substantial soil particles are deposited in the acrylic tube. The final water content of the deposited silt inside the acrylic tube after the test was 42%. It was found that the state of stresses(geo-static earth pressures) in the acrylic tube was anisotropic rather than isotropic.

Damage Visualization of Filament Wound Composite Hydrogen Fuel Tank Using Ultrasonic Propagation Imager (초음파전파영상화 시스템을 이용한 필라멘트 와인딩 복합재 수소 연료 탱크의 손상 가시화)

  • Lee, Jung-Ryul;Jeong, Hyomi;Chung, Truong Thanh;Shin, Hejin;Park, Jaeyoon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.143-147
    • /
    • 2015
  • This paper proposes laser ultrasonic technique for the impact damage inspection of hydrogen fuel tank and proves that the impact damage can be visualized using an ultrasonic wave propagation imager with an easy detachable sensor head as an impact damage inspection tool for hydrogen fuel tanks. Also the performances of the proposed ultrasonic propagation imager support it can be implemented in real-world technology when the hydrogen car becomes popular.

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Fabrication and Electrical Properties of 0-3 Piezoelectric Ceramic - Polymer Composite (0-3 압전 세라믹스-고분자 복합소재의 전기적 특성과 제조)

  • Shin, Bum-Seung;Paik, Jong-Hoo;Lim, Eun-Kyeong;Kim, Chang-Il;Im, Jong-In;Lee, Young-Jin;Choi, Byung-Hyun;Kim, Dong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.327-328
    • /
    • 2006
  • 본 연구에서는 0-3 타입의 압전 세라믹 - 고분자 복합소재를 제조하기 위해서 $Pb(Zr_{0.54}Ti_{0.48})O_3$ + 0.2 wt% $Cr_2O_3$ + 1 wt% $Nb_2O_5$ 조성을 기본 조성으로 하여, 세라믹-고분자 첨가량에 따른 복합소재의 전기적 특성과 여러 분극조건, 즉 분극온도, 분극시간, 분극전압 변화에 의한 압전 특성을 고찰하였다. 세라믹 첨가비율이 증가함에 따라 유전상수와 압전상수($d_{33}$)는 증가하였으며, 전압상수($g_{33}$)는 급격히 감소하는 경향을 보였으며, 분극시간과 분극전압도 전기적 특성에 영향을 주는 것을 확인하였다. 분극전압 5KV 인가한 고분자 15% 첨가한 복합 소재에서 유전상수 13, 압전상수 $d_{33}$ 23(${\ast}10^{-12}C/N$), 전압상수 $g_{33}$ 170($10^{-3}v.m/N$)의 우수한 특성을 나타내었다.

  • PDF

Development of PDMS-based Drag Force-type Flowmeter with Graphite-CNT Composite as Piezoresistive Material (흑연과 CNT 복합체를 압저항체로 하는 PDMS 기반의 바람저항형 유속센서 개발)

  • Sang Jun Park;Min Gi Shin;Noh Yeon Kim;Sang Hoon Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2023
  • In this study, a polydimethylsiloxane (PDMS)-based drag force-type flowmeter was fabricated using a graphite-carbon nanotube (CNT) composite as a piezoresistive material and evaluated. The device was in the form of a cantilever, which was composed of the soft material, PDMS, and fabricated using a mold manufactured by a three-dimensional printer. The cost-effective graphite was mixed with CNTs to serve as a piezoresistive material. The optimal mixing ratio was investigated, and the piezoresistive material formed using a graphite:PDMS:CNT ratio of 1.5:1:0.01 was adopted, which showed a stable output and a high sensitivity. Various forward and backward air flows in the range of 0-10 m/s were measured using the fabricated flowmeter, and both tensile and compression characteristics were evaluated. The measured results showed a stable output, with the resistance change gradually increasing with the air flow rate. Repeatability characteristics were also tested at a repeated air flow of 10 m/s, and the flowmeter responded to the applied air flow well. Consequently, the fabricated device has a high sensitivity and can be used as a flowmeter.