• Title/Summary/Keyword: composite process

Search Result 3,004, Processing Time 0.029 seconds

Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process (마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구)

  • Park, E.T.;Kim, T.J.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

Development of Material Qualification Method for LCM(Liquid Composite Molding) Process (항공기용 액상성형공정(Liquid Composite Molding) 복합재료 인증방안 개발)

  • Sung-In Cho
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Liquid Composite Molding (LCM), an Out of Autoclave (OoA) composite manufacturing process, has big advantages when making large and complex structures of airplanes. Since the importance of LCM process is increasing, FAA has suggested recommended guidance and criteria for the development of material and process specifications for LCM materials and process. The importance of LCM process is also raised by domestic composite material suppliers and OEM. This study suggested structures of material specifications and process specification of LCM materials. Material qualification method for LCM process and material was also developed in this study.

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (II) - Development of Thin Composite by Composition Type Applied to Optimum Manufacturing Condition - (합판(合板) 대용(代用) 박판상(薄板狀) 복합재(複閤材) 제조(製造)에 관(關)한 연구(硏究) (II) -최상제조조건(最適製造條件)을 적용(適用)한 구성형태별(構成形態別) 박판상(薄板狀) 복합재(複閤材) 개발(開發)-)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.74-84
    • /
    • 1995
  • Eight types of thin composite panels were manufactured by press-lam and mat-forming process applied to optimum manufacturing condition, studied in former first research by author (1995). They were tested and compared with control boards on dimensional stability, internal bond strength, tensile strength, Screw withdrawal strength, and bending properties. These thin composite panels manufactured by mat-forming process were generally superior to those by press-lam in dimensional stability and mechanical properties. In the dimensional stability and mechanical properties of thin composite panels manufactured by mat-forming process, the thin composite panels (A and E type) composed of particle or sawdust core and veneer face with polyethylene film, were as good as those of common plywood (control board). Internal bond strength showed highest value in the thin composite panel(D type) which composed of particle core and polypropylene screen face with polyethylene film. The thin composite panels(G and H type) composed of sawdust or particle core and polypropylene screen face with polyethylene film by press-lam and mat-forming process, showed most highest value in dimensional stability and water absorption.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(I) - Effects of Process Variables on the Physical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(I) - 공정변수가 복합재의 물리적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Effects of process variables were evaluated in physical properties of the wood fiber-thermoplastic fiber composites using nonwoven web method. Turbulent air mixer using compressed air was employed to mix wood fiber with two types of thermoplastic polypropylene and nylon 6 fibers. The optimal hot press temperature and time were found to be $190^{\circ}C$ and 9 minutes in wood fiber-polypropylene fiber composite and to be $220^{\circ}C$ and 9 minutes in wood fiber-nylon 6 fiber composite. As the density of wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite increased, the physical properties were improved The density appeared to be the most significant factor on physical properties in the statistical analysis. The composition ratio of polypropylene or nylon 6 fiber to wood fiber was considered not to be statistically significant factor. The thickness swelling decreased somewhat in wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite as the content of synthetic fiber increased. As the increase of mat moisture content, dimensional stability was improved in wood fiber-polypropylene fiber composite but not in wood fiber-nylon 6 fiber composite.

  • PDF

Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods (복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

Void Defects in Composite Titanium Disilicide Process (복합 티타늄실리사이드 공정에서 발생한 공극 생성 연구)

  • Cheong, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.883-888
    • /
    • 2002
  • We investigated the void formation in composite-titanium silicide($TiSi_2$) process. We varied the process conditions of polycrystalline/amorphous silicon substrate, composite $TiSi_2$ deposition temperature, and silicidation annealing temperature. We report that the main reason for void formation is the mass transport flux discrepancy of amorphous silicon substrate and titanium in composite layer. Sheet resistance in composite $TiSi_2$ without patterns is mainly affected by silicidation rapid thermal annealing (RTA) temperature. In addition, sheet resistance does not depend on the void defect density. Sheet resistance with sub-0.5 $\mu\textrm{m}$ patterns increase abnormally above $850^{\circ}C$ due to agglomeration. Our results imply that $sub-750^{\circ}C$ annealing is appropriate for sub 0.5 $\mu\textrm{m}$ composite X$sub-750_2$ process.

Fabriation of BMI Resin Composite for High Speed Train Transformer (변압기 권선 지지용 BMI 수지 복합재 제조 공정 개발)

  • 엄문광;김종훈;우재희;김세창
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.257-260
    • /
    • 2000
  • The composite composed of glass fabric and BMI resin was fabricated using resin transfer molding(RTM) process. it will be used as a supporting plate of transformer coil for high speed train. To develop a RTM process, permeability of preform was measured and resin properties like a viscosity and gellation time were checked. A resin pre-heating system and a mold system were also designed and developed. Using a vacuum-assisted RTM process, the composite supporting plate was successfully fabricated.

  • PDF

Development of the Composite Bus Housing Panel Using RTM (RTM 을 이용한 복합재료 Bus Housing Panel의 개발)

  • 김포진;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.189-192
    • /
    • 2001
  • Resin transfer molding process has been widely used in the automobile industry, because the product with large area can be manufactured easily and the cost for the manufacturing is lower than that of compression molding and hand lay up method. Since RTM process is suitable for large bus housing panels, in this work, the composite housing panel was manufactured by RTM process and the mechanical properties, surface quality and the condition of manufacturing process were studied.

  • PDF

A Suggestion to Establish Statistical Treatment Guideline for Aircraft Manufacturer (국산 복합재료 시험데이터 처리지침 수립을 위한 제언)

  • Suh, Jangwon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.39-43
    • /
    • 2014
  • This paper examines the statistical process that should be performed with caution in the composite material qualification and equivalency process, and describes statistically significant considerations on outlier finding and handling process, data pooling through normalization process, review for data distributions and design allowables determination process for structural analysis. Based on these considerations, the need for guidance on statistical process for aircraft manufacturers who use the composite material properties database are proposed.

A Study on Carbon Dioxide Removal Process Using Composite Membrane in DME Production Process (DME 생산공정에서 복합막을 이용한 이산화탄소 제거공정 전산모사)

  • Noh, Sang-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4698-4706
    • /
    • 2014
  • In this study, the simulation was performed for the CO removal process using a composite membrane in DME production. The composite membrane, PEI-PDMS (polyetherimide- polydimethyl siloxane) manufactured by Airrane Co. Ltd., was used in the modeling through a commercial simulation design program, PRO/II with PROVISION 9.2 by Invensys. To simulate the process, the permeability constants of each of the pure component from Airrane Co. Ltd. were determined by regression analysis from the experimental data. The required separation membrane area and utility cost in the CO removal process were obtained using a chemical process simulator and composite membrane with a compatible permeability constant.