• 제목/요약/키워드: composite powder coating

검색결과 127건 처리시간 0.03초

코팅제 및 코팅 함량에 따른 철 분말 성형체의 특성 (Properties of compacted iron powder core coated with organic materials)

  • 민복기;김인성;김종령;최성조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.264-267
    • /
    • 2005
  • Soft magnetic iron powders have been coated with polyester or phenol resin. And the coated powder (soft magnetic composite) have been pressed into ring type core over the pressure of 870 MPa. Green density, magnetic flux density, permeability, core loss of the samples were measured to look at the effect of the coating materials and the amount of them. Green density is increased with the amount of coating materials and shows the maximum value, 6.5 $g/cm^3$ at 5 w/o, but decreased over it. And lowest value of the core loss is showed for the 5 w/o coated samples.

  • PDF

Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직 (Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders)

  • 소웅섭;백경호
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Properties of Soft Magnetic Composite with Evaporated MgO Insulation Coating for Low Iron Loss

  • Uozumi, Gakuji;Watanabe, Muneaki;Nakayama, Rryoji;Igarashi, Kazunori;Morimoto, Koichiro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1288-1289
    • /
    • 2006
  • Innovative SMC with low iron loss was made from iron powders with evaporated MgO insulation coating. The coating had greater heat-resistance than conventional phosphatic insulation coating, which enabled stress relieving annealing at higher temperature. Magnetic properties of toroidal samples (OD35mm,ID25mm, t5) were examined. The iron loss at 50Hz for Bm = 1.5T was lower 50% of conventional SMC and was almost the same with silicon iron laminations(t0.35). It became clear that MgO insulation coating has enough heat resistance and adhesiveness to powdersurface to obtain innovative SMC with low iron loss.

  • PDF

Fabrication of $Ti(Al,\;O)-Al_2O_3$ Powder Feedstock for Thermal Spraying and Evaluation of the Composite Coating

  • Cao, Peng;Gabbitas, Brian;Zheng, Ling;Zhang, Deliang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.49-50
    • /
    • 2006
  • [ $Ti(Al,\;O)-Al_2O_3$ ] composite powders were produced by high energy mechanical milling of a mixture of Al and $TiO_2$ powders followed by a combustion reaction. The powders were subsequently thermally sprayed on H13 steel substrates. Microstructural examination was conducted on the composite powders and thermally sprayed coatings, using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The performance of the coatings was evaluated in terms of micro-hardness and thermal fatigue. The thermally sprayed coatings performed very well in the preliminary thermal fatigue tests and showed no wetting tendency to molten aluminum.

  • PDF

레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성 (Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties)

  • 함기수;김철오;박순홍;이기안
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.

Dry Coated Particle for Plasma Spraying

  • Briones-Rodriguez, C.;Mayagoitia-Barragan, V.;Cuenca-Alvarez, R
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.156-157
    • /
    • 2006
  • The preparation of composite powders for plasma spraying by an in-house designed mechanofusion process is investigated. Results show that dry particle coating depends on the chemical and mechanical properties of powders. In metal/oxide and metal/oxide/carbide powder mixtures, fine ceramic particles coat the surface of the metallic coarser particles. A nearly rounded shape of the final composite particles is induced by the mechanical energy input with no formation of new phases. However with the carbide/metal powdered system, only an intimate mixture of components is achieved. It is suggested that the coating mechanism is governed by agglomeration and rolling phenomena.

  • PDF

전기도금법을 이용한 나노 산화티타늄 니켈 복합도금에 관한 연구 (Electrodeposition of Nano TiO2 Powder Dispersed Nickel Composite Coating)

  • 박소연;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제19권4호
    • /
    • pp.65-69
    • /
    • 2012
  • 복합도금이란 금속 도금층을 매트릭스로 세라믹, 폴리머, 나노분말과 같은 입자를 공석시켜 경도의 향상, 내마모성, 내식성, 자기 윤활성 등의 특성을 갖는 복합 금속피막을 얻어내는 방법으로 본 연구에서는 나노입자로 $TiO_2$를 사용하여 니켈과 함께 복합도금층을 형성하였다. $TiO_2$를 첨가시킨 복합전기도금을 통해 표면저항성 향상, 광분해 효과를 기대할 수 있다. 용액조건 중 pH 변화에 따른 zeta전위를 측정하였다. 초음파처리를 통한 물리적인 방법으로 용액 중 나노분말의 응집을 최소화한 후 $TiO_2$-Ni 복합도금을 실시하였다. 최적의 도금 조건으로 $50^{\circ}C$에서 pH 3.5, 전류밀도 $40mA/cm^2$에서 가장 효과적이었으며 Ti의 함량은 $50^{\circ}C$에서 15-20 at.%로 확인되었다.

고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성 (Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding)

  • 여기호;박은수;이한찬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

다이아몬드 입자에 형성된 중간층이 다이아몬드 공구 성능에 미치는 영향 (Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool)

  • 손경식;이정훈;최용제;정우창;정원섭
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.216-222
    • /
    • 2013
  • In order to improve the performance of electrodeposited diamond-nickel composite, surface modification of diamond particles was carried out using powder immersion reaction assisted coating (PIRAC). Titanium and chromium were selected as coating elements, which are known as carbide former. With respect to the powder elements, various phases were formed on diamond; metallic Ti and TiC for Ti powder, $Cr_3C_2$ for Cr powder, and TiC and $Cr_3C_2$ for Ti-Cr mixed powder. Surface modified diamond particle showed higher specific surface area, especially Ti coating induced considerable increase of specific surface area. The increase of specific surface area suggests increase of surface roughness, and that was confirmed by surface observation using FE-SEM. In addition, wear properties of diamond-nickel composite including surface modified diamonds were improved, and Ti coated diamond showed the highest performance. The wear property of diamond-nickel composite is dependent on adhesion strength between diamond particle and nickel layer. Therefore, surface modification of diamond particle by PIRAC increasing surface roughness is effective to improve the properties of diamond-nickel composite.