• Title/Summary/Keyword: composite method

Search Result 6,469, Processing Time 0.03 seconds

Reliability Analysis for Composite Laminated Plate Using Hybrid Response Surface Method (복합 반응면 기법을 이용한 복합재 적층판의 신뢰성해석)

  • Lee, Seok-Je;Kim, In-Gul
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.40-47
    • /
    • 2010
  • In this paper, the hybrid response surface method(HRSM) is proposed and examined. Hybrid response surface method calculate a approximate model repeatedly based on MPP coordinates. To verify the performance, probability of failure, MPP(Most Probable failure Point) and reliability index are calculated for nonlinear function and composite laminated plate by using reliability analysis method and compared with results by using typical response surface method(RSM). Probability of failure is calculated under the assumption of the nonlinear limit state equation and given failure criterion. The results of proposed method shows performance improvement in estimating the probability of failure.

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates

  • Cho, Jin-Rae
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.

A Study on the Next-generation Composite Based on the Highly Porous Carbon Nanotube Fibers (다공성 탄소나노튜브 섬유를 이용한 차세대 복합소재 연구)

  • Lee, Kyunbae;Jung, Yeonsu;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.139-146
    • /
    • 2022
  • In this study, we study fabrication methods suitable for CNT fibers-based composite. We try to fabricate a composite material using a small amount of CNT fiber preparation of woven fabrics or stitched unidirectional fabrics consisting of CNT fiber is not achievable currently. The composite materials on the basis of CNT fibers have been mainly manufactured filament winding method due to productivity issues and difficulties in composite processes. We develop a new method to prepare CNT fibers-based composite using resin infiltrated CNT fibers-based films. Because CNT fibers have numerous nanopores inside, unnecessary resin can remain after curing and decrease the mechanical properties of the composites. To remove the excess resin, pressure should be applied during the process, but the pressure applied through VaRTM was not enough to remove the excess resin. To obtain the composite with high ratio of CNT fibers, higher pressure using hot press machine and foams next to the resin-infiltrated CNT fibers are necessary. We can obtain the composite having a mass ratio of 58.5 wt% based on the new suggested method and diluted epoxy. The specific strength of the composite reach 0.525 N/tex. This study presents a new process method that can be applied to the manufacturing of CNT fiber composite materials in the future.

Development of a Composite Rotor for Flywheel Energy Storage System (플라이휠 에너지 저장 장치용 복합재 로터 개발)

  • Kim, Myung-Hun;Han, Hun-Hee;Kim, Jae-Hyuk;Kim, Seong-Jong;Ha, Seong-Gyu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF

Study on the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end constraints

  • Junli Lyu;Encong Zhu;Rukai Li;Bai Sun;Zili Wang
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.539-551
    • /
    • 2023
  • In order to study the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end restraints, temperature rise tests with constant load were conducted on full-scale castellated composite beams with ortho-hexagonal holes and hinge or rigid joint constraints to investigate the temperature distribution, displacement changes and failure patterns of castellated composite beams with two different beam-end constraints during the whole course of fire. The results show that (1) During the fire, the axial pressure and horizontal expansion deformation generated in the rigid joint constrained composite beam were larger than those in the hinge joint constrained castellated composite beam, and their maximum horizontal expansion displacements were 30.2 mm and 17.8 mm, respectively. (2) After the fire, the cracks on the slab surface of the castellated composite beam with rigid joint constraint were more complicated than hinge restraint, and the failure more serious; the lower flange and web at the ends of the castellated steal beams with hinge and rigid joint constraint produced serious local buckling, and the angles of the ortho-hexagonal holes at the support cracked; the welds at both ends of the castellated composite beam with rigid joint constraint cracked. (3) Based on the simplified calculation method of solid-web composite beam, considering the effect of holes on the web, this paper calculated the axial force and displacement of the beam-end constrained castellated composite beams under fire. The calculation results agreed well with the test results.

Development of Selection Criteria for Composite Method Using Half-PC Slab (하프슬래브를 이용한 PC 복합공법의 선정기준 개발)

  • Park, Byeong-Hun;Kim, Jae-Yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.103-104
    • /
    • 2016
  • Most of studies on PC method aim at the structural analysis and development of PC members, and studies on the construction management aspect are insufficient. This study is a basic research in the construction management aspect regarding 'composite method using hollow-PC column' (HPC method), and is intended to develop assessment standards for the benefit·cost analysis of HPC method. Assessment standards for the benefit·cost analysis were composed of main-factors and sub-factors through interview with 4 experts. It was possible to classify main-factors into 4 major categories, i.e,. structural performance, construction performance, construction duration and construction cost. Sub-factors were composed of factors which were of high importance in assessing the two methods. And factors judged to be repeated or of little importance were excluded.

  • PDF

Analysis Method of Transmission Characterization for Multi-layered Composite Material Based on Homogenization Method

  • Hyun, Se-Young;Song, Yong-Ha;Jeoun, Young-Mi;Kim, Bong-Gyu
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.59-65
    • /
    • 2021
  • In this paper, the transmission characteristics of the multi-layered composite material with wire mesh and honeycomb core for aircraft applications have been analyzed with the proposed method. The proposed method converts the conductive wire mesh into effective layer, while for the dielectric honeycomb core, effective permittivity has been derived based on volume fraction with the proposed method. The proposed method has been verified through comparison with full-wave simulation and revealed excellent. In addition, the calculation time of the proposed method is a few order of magnitude faster in comparison with the full-wave simulation.

Hoop Ring Test Method to Evaluate the Fiber Material Properties of Composite Motor Case (Hoop ring 시험방법을 이용한 복합재연소관의 섬유방향 물성 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyung-Kun;Lee, Sang-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.429-432
    • /
    • 2009
  • The deformation and burst pressure of composite motor case highly depends on fiber material properties. Therefore, measuring exact fiber material properties is a priority item to develop a advanced composite motor case. However, the fiber material properties in composite motor case is very sensitive on the various processing variables (equipment, operator and environmental condition etc..)and size effect, so the fiber material properties can't be measured exactly from the existing specimen test method. This paper suggests a newly developed test method, hoop ring test, that is capable of pressure testing with ring specimens extracted from real composite motor case. The results of hoop ring test showed excellent agreement with measured fiber material properties from hydro-burst test with full scale composite motor cases.

  • PDF

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures Formed by Composite Plating Method (복합도금법으로 형성된 탄소나노튜브-구리 복합구조물의 전계방출특성)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Yoo Hyeong-Suk;Lee Ho-Young;Joo Seung-Ki;Kim Yong-Hyup
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.163-166
    • /
    • 2005
  • Carbon nanotube-copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes (MWNTs) synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field was about $3.0\;V/{\mu}m$ with the current density of $0.1\;{\mu}A/cm^2.$ We observed relatively uniform emission characteristics as well as stable emission current Carbon nanotube-copper composite plating method is efficient and it has no intrinsic limit on the deposition area. Moreover, it gives strong adhesion between emitters and an electrode. Therefore, we recommend that carbon nanotube-copper composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

Investigation of Low Velocity Impact Behavior of Laminated Composite Plates Considering the Stacking Method (적층방법에 따른 복합적층판의 저속충격거동 조사)

  • Kim, Seung-Deog;Kwon, Suk-Jun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 2010
  • Laminated composite plates have shown their superiority over metals in applications requiring high specific strength, high specific modulus, and so on. Therefore, they have used in various industry. However, they have poor resistance to impact compared to typical metal materials. So, many researchers have investigated about impact behavior of laminated composite plate. To investigate impact behavior of laminated composite plate, we have to calculate contact force between impactor and laminated composite plate at the first. Impactor's equation of motion, plate's equation of motion and correlations for indentation were solved to know the contact force at the same time. In this study, low velocity impact behavior of composite plate was investigated using the finite element program which is involved the classical Hertzian law, Sun's law and Sun & Yang's experimental law and Sun & Tan's experimental law considering the stacking method.

  • PDF