Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures Formed by Composite Plating Method

복합도금법으로 형성된 탄소나노튜브-구리 복합구조물의 전계방출특성

  • Sung Woo-Yong (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim Wal-Jun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee Seung-Min (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoo Hyeong-Suk (School of Material Science and Engineering, Seoul National University) ;
  • Lee Ho-Young (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Joo Seung-Ki (School of Material Science and Engineering, Seoul National University) ;
  • Kim Yong-Hyup (School of Mechanical and Aerospace Engineering and The Institute of Advanced Aerospace Technology, Seoul National University)
  • 성우용 (서울대학교 기계항공공학부) ;
  • 김왈준 (서울대학교 기계항공공학부) ;
  • 이승민 (서울대학교 기계항공공학부) ;
  • 유형석 (서울대학교 재료공학부) ;
  • 이호영 (서울대학교 기계항공공학부) ;
  • 주승기 (서울대학교 재료공학부) ;
  • 김용협 (서울대학교 기계항공공학부, 항공우주신기술연구소)
  • Published : 2005.08.01

Abstract

Carbon nanotube-copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes (MWNTs) synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field was about $3.0\;V/{\mu}m$ with the current density of $0.1\;{\mu}A/cm^2.$ We observed relatively uniform emission characteristics as well as stable emission current Carbon nanotube-copper composite plating method is efficient and it has no intrinsic limit on the deposition area. Moreover, it gives strong adhesion between emitters and an electrode. Therefore, we recommend that carbon nanotube-copper composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

Keywords

References

  1. R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science, 297 (2002) 787 https://doi.org/10.1126/science.1060928
  2. X. Zhang, R. Liu, T. V. Streekumer, S. Kumar, V. C. Moore, R. H. Hauge, Richard E. Smalley, Nano Lett., 3 (2003) 1285 https://doi.org/10.1021/nl034336t
  3. B. Gao, G. Z. Yue, Q. Qiu, Y. Cheng, H. Shimoda, L. Fleming, O. Zhou, Adv. Mater., 13 (2001) 1770 https://doi.org/10.1002/1521-4095(200112)13:23<1770::AID-ADMA1770>3.0.CO;2-G
  4. K. Yamamoto, S. Akita, Y. Nakayama, J. Phys. D, 31 (1998) L34 https://doi.org/10.1088/0022-3727/31/8/002
  5. C. Bower, O. Zhou, W. Zhu, A. G. Ramirez, G. P. Kochanski, S. Jin, Mater. Res. Soc. Symp. Proc., 593 (2000) 215
  6. W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Kim, M. J. Yun, J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, J. M. Kim, Appl. Phys. Lett., 78 (2001) 1547 https://doi.org/10.1063/1.1349870
  7. Y. D. Lee, J. A. Lee, S. I. Moon, J. H. Park, J. H. Han, J. E. Yoo, Y. H. Lee, S. Nahm, B. K. Ju, J. of KlEEME, 17 (2004) 541
  8. S. Arai, M. Endo, Electrochem Solid State Lett, 7 (2004) C25 https://doi.org/10.1149/1.1644354
  9. S. Arai, M. Endo, Electrochem Commun., 5 (2003) 797 https://doi.org/10.1016/j.elecom.2003.08.002
  10. J. H. Oh, J. G. Lee, C. M. Lee, Materials Chemistry and Physics, 73 (2002) 227 https://doi.org/10.1016/S0254-0584(01)00378-9
  11. B. S. Min, W. S. Chung, I. G. Kim, J. Kor. Inst. Mat. & Mater., 40 (2002) 1281