• Title/Summary/Keyword: composite leaf spring

Search Result 9, Processing Time 0.031 seconds

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면분석법을 이용한 FRP Leaf Spring의 최적설계)

  • 임동진;이윤기;김민호;윤희석
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • The present paper is concerned with the optimum design of taper spring, in which the static spring rate of the fiber-reinforcement composite material spring is fitted to that of the steel leaf spring. The thickness and width of springs were selected as design variables. The object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-glass/epoxy and carbon/epoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. The result of the static spring rates show that optimized composite leaf springs agree with steel leaf spring within 1%.

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.

Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring (복합재 판스프링의 재료특성에 따른 스프링 강성변화와 초기 파단하중 예측)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1345-1350
    • /
    • 2014
  • This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses.

Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans (다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • In this paper, design technique using genetic algorithms(GA) for design optimization of composite leaf springs is presented here. After the initial design has been validated by the car plate spring as a finite element model, the genetic algorithm suggests the process of optimizing the number of layers of composite materials and their angles. Through optimization process, the weight reduction process of leaf springs and the number of repetitions are compared to the existing algorithm results. The safety margin is calculated by organizing a finite element model to verify the integrity of the structure by applying an additive sequence optimized through the genetic algorithm to the structure. When GA is applied, layer thickness and layer angle of complex leaf springs have been obtained, which contributes to the achievement of minimum weight with appropriate strength and stiffness. A reduction of 65.6% original weight is reached when a leaf steel spring is replaced with a leaf composite spring under identical requirement of design parameters and optimization.

A Study of the Lug Fracture Improvement for Composite Leaf Spring Landing Gear (판스프링방식 착륙장치의 러그파손 개선 연구)

  • Shim, Daisung;Jang, Deakhyeon;Park, Chahwan;Kim, Jounghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • This is a study for the improvement of the fractured lug structure that connects the landing gear to the fuselage of the aircraft using the composite leaf spring landing gear. The lug surface was analyzed to find out the cause of fracture. The lug was destroyed by the crack initiation and propagation under the repeated stresses. The frictional wears of the lug structure were proceeded and that affected adversely to the crack. Also, the square protrusion of the lug has a weak shape to bring about stress concentration. The design changes were conducted and the test was performed to verify changed design results.

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면 분석법을 이용한 FRP 테이퍼 판 스프링의 최적설계)

  • 오상진;이윤기;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.676-679
    • /
    • 1997
  • The present paper is concerned with the optimal deslgn that the static spring rate of the fiber-reinforcement composite spring is fitted to that of the steel leaf spring. The thickness and w~dth of springs were selected as deslgn variables. And object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-GlassIEpoxy and CarbonIEpoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. It was found that the static spring rate of the optimal model was almost similar to that of the existing spring.

  • PDF

Effect of PLS (Posterior Leaf Spring) on Standing Balance in Hemiplegic Patients (PLS (Posterior Leaf Spring) 착용이 편마비 환자의 동적 균형에 미치는 영향)

  • Kim, Jong-Man;Yi, Chung-Hwi;Yang, Hoi-Song
    • Physical Therapy Korea
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 1999
  • The Posterior Leaf Spring (PLS) has been used for hemiplegic patients in order to help their walking and to increase their balance function. Past studies have mainly focused on the PLS's influence on patients' walking without taking balance function into consideration. The purpose of this study was to identify the immediate effect of PLS on the standing balance in hemiplegic patients. Fifteen hemiplegic patients participated in this study: 10 men and 5 women, with an average age of 53.8 years. Standing balance was measured using a computerized dynamic posturography device under three conditions namely bare-foot standing, standing in shoes without PLS, and standing in shoes with PLS. The results were as follows: 1) The composite equilibrium scores of patients who stood in shoes only and stood in shoes with PLS were higher than those of patients who stood bare-foot. 2) There were no statistical difference in the composite equilibrium scores between the standing condition of patients who stood bare foot and that of patients who stood in shoes with PLS. In conclusion, it is not clear whether or not the PLS affects the standing balance of hemiplegic patients. Further study is required to determine the precise effect of the PLS on standing balance in hemiplegic patients who are not wearing shoes. This is particularly relevant in Korea culture where custom demands the removal of shoes when entering any house or even many restaurants.

  • PDF

High Speed Operating Test of a 300Wh Flywheel Energy Storage System Using Superconductor Bearings (초전도베어링을 이용한 300 Wh급 플라이휠 에너지저장장치의 고속운전시험)

  • 김영철;최상규;성태현;이준성;한영희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.514-520
    • /
    • 2001
  • A 300Wh class flywheel energy storage system using high Tc superconductor bearings(HTC SFES) is being developed by KIMM and KEPRI. HTC SFES consists of a flywheel rotor, superconductor bearings, a motor/generator and its controller, touch-down bearings, vacuum chamber, etc. Stiffness and damping values of superconductor bearings were experimentally estimated to be 67,700N/m and 29Ns/m respectively. The present HTC SFES was designed to have maximum operating speed of 33000 rpm, which is far above 2 rigid body mode critical speeds of 645rpm and 1,275rpm. Leaf-spring type touch-down bearing were utilized to have the system pass safely through the system critical speeds. It has been experimentally verified that the system can run stably up to 28,000 rpm so that HTC SFES is now expected to reach up to its maximum design speed of 33,000rpm without any difficulties. The Halbach array motor & generator has also been proven its effectiveness on transferring electrical energy to a rotaing composite flywheel in kinetic form.

  • PDF

The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities (족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동)

  • Song Sam-Hong;Oh Dong-Joon;Jung Hoon-Hee;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.