• 제목/요약/키워드: composite laminated plate

검색결과 396건 처리시간 0.019초

Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO

  • Topal, Umut;Vo-Duy, Trung;Dede, Tayfun;Nazarimofrad, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.617-628
    • /
    • 2018
  • This paper deals with the maximization of the critical buckling load of simply supported antisymmetric angle-ply plates resting on Pasternak foundation subjected to compressive loads using teaching learning based optimization method (TLBO). The first order shear deformation theory is used to obtain governing equations of the laminated plate. In the present optimization problem, the objective function is to maximize the buckling load factor and the design variables are the fibre orientation angles in the layers. Computer programming is developed in the MATLAB environment to estimate optimum stacking sequences of laminated plates. A comparison also has been performed between the TLBO, genetic algorithm (GA) and differential evolution algorithm (DE). Some examples are solved to show the applicability and usefulness of the TLBO for maximizing the buckling load of the plate via finding optimum stacking sequences of the plate. Additionally, the influences of different number of layers, plate aspect ratios, foundation parameters and load ratios on the optimal solutions are investigated.

Buckling and vibration of laminated composite circular plate on winkler-type foundation

  • Afsharmanesh, B.;Ghaheri, A.;Taheri-Behrooz, F.
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.1-19
    • /
    • 2014
  • Buckling and vibration characteristics of circular laminated plates under in-plane edge loads and resting on Winkler-type foundation are solved by the Ritz method. Inclusive numerical data are presented for the first three eigen-frequencies as a function of in-plane load for different classical edge conditions. Moreover, the effects of fiber orientation on the natural frequencies and critical buckling loads of laminated angle-ply plates with stacking sequence of $[({\beta}/-{\beta}/{\beta}/-{\beta})]_s$, are studied. Also, selected deformation mode shapes are illustrated. The correctness of results is established using finite element software as well as by comparison with the existing results in the literature.

Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches

  • Foda, M.A.;Alsaif, K.A.
    • Smart Structures and Systems
    • /
    • 제10권2호
    • /
    • pp.111-130
    • /
    • 2012
  • Satellites with flexible lightweight solar panels are sensitive to vibration that is caused by internal actuators such as reaction or momentum wheels which are used to control the attitude of the satellite. Any infinitesimal amount of unbalance in the reaction wheels rotors will impose a harmonic excitation which may interact with the solar panels structure. Therefore, quenching the solar panel's vibration is of a practical importance. In the present work, the panels are modeled as laminated composite beam using first-order shear deformation laminated plate theory which accounts for rotational inertia as well as shear deformation effects. The vibration suppression is achieved by bonding patches of piezoelectric material with suitable dimensions at selected locations along the panel. These patches are actuated by driving control voltages. The governing equations for the system are formulated and the dynamic Green's functions are used to present an exact yet simple solution for the problem. A guide lines is proposed for determining the values of the driving voltage in order to suppress the induced vibration.

Buckling of symmetrically laminated quasi-isotropic thin rectangular plates

  • Altunsaray, Erkin;Bayer, Ismail
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.305-320
    • /
    • 2014
  • The lowest critical value of the compressive force acting in the plane of symmetrically laminated quasi-isotropic thin rectangular plates is investigated. The critical buckling loads of plates with different types of lamination and aspect ratios are parametrically calculated. Finite Differences Method (FDM) and Galerkin Method are used to solve the governing differential equation for Classical Laminated Plate Theory (CLPT). The results calculated are compared with those obtained by the software ANSYS employing Finite Elements Method (FEM). The results of Galerkin Method (GM) are closer to FEM results than those of FDM. In this study, the primary aim is to conduct a parametrical performance analysis of proper plates that is typically conducted at preliminary structural design stage of composite vessels. Non-dimensional values of critical buckling loads are also provided for practical use for designers.

Stability and failure of symmetrically laminated plates

  • Chai, Gin Boay;Hoon, Kay Hiang;Chin, Sin Sheng;Soh, Ai Kah
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.485-496
    • /
    • 1996
  • This paper describes a numerical and experimental study on the stability and failure behaviour of rectangular symmetric laminated composite plates. The plates are simply supported along the unloaded edges and clamped along the loaded ends, and they are subjected to uniaxial in-plane compression. The finite element method was employed for the theoretical study. The study examines the effect of the plate's stacking sequence and aspect ratio on the stability and failure response of rectangular symmetric laminated carbon fibre reinforced plastics composite plates. The study also includes the effect of the unloaded edge support conditions on the postbuckling response and failure of the plates. Extensive experimental investigation were also carried out to supplement the finite element study. A comprehensive comparison between theory and experimental data are presented and discussed in this contribution.

Dynamic analysis of laminated composite skew plates with cut-out

  • Mandal, Arpita;Haldar, Salil;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.639-646
    • /
    • 2018
  • The aim of the present paper deals with free vibration analysis of laminated composite skew plates with single and multiple cut-outs. For complete understanding of the dynamic behavior of laminated skew plates with cut-out a numerical analysis has been carried out by developing a computer code in FOTRAN. Special attention is drawn on the formulation of mass matrix by considering effect of rotary inertia. The results obtained by the finite element formulation using nine noded isoparametric plate bending element are validated by comparing the results from relevant published literature. Few new results on laminated skew plates with cut-out have been presented.

복합적층 패널로 보강된 단순지지 판의 좌굴해석 (Buckling Analysis of Simple Supported Plate Stiffened with Laminated Composite Panel)

  • 박대용;장석윤
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.621-628
    • /
    • 2004
  • 본 연구에서는 보강판의 좌굴방지를 위해 기존에 주로 사용되는 보강재를 복합재료를 사용하여 대체하는 새로운 개념을 소개한다. 강재 보강재를 복합재료로 대체함으로써 용접의 불편함과 피로 등에 의한 손상 및 부식을 원천적으로 제거할 수 있다. 강판에 접착되는 복합재료는 강판이 좌굴할 때까지 완전히 접착된 것으로 가정하였다. 이렇게 구성되는 판은 길이와 폭 방향으로 변단면의 형태를 가지며 비등방성의 재료특성을 나타낸다. 이러한 비등방성 변단면 판의 좌굴해석을 위해 범용 유한요소 프로그램인 LUSAS를 사용하였으며 여러 가지 매개변수 변화 해석을 통해 비등방성 변단면 판의 좌굴거동 특성을 살펴보았다.

Numerical and experimental study of large deflection of symmetrically laminated composite plates in compression

  • Chai, Gin Boay;Hoon, Kay Hiang
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.359-367
    • /
    • 1994
  • The stability behaviour of symmetrically laminated rectangular composite plates with loaded ends clamped and unloaded edges simply-supported, and subjected to uniform in-plane compression is investigated. A numerical and experimental investigation is presented in this contribution. The stacking sequence of the laminated glass/epoxy composite plates is symmetric about the middle surface and consists of 8-ply [0, 90, +45, -45]s lamination. Numerical predictions were obtained through the use of the finite element method. The above plates were modelled with 8-noded isoparametric layered shell elements. The effect of the input parameters such as the degree and forms of prescribed initial imperfection and the incremental step size required for incremental loading, on the convergence of the solution is thoroughly examined. Experimental results are presented for 10 test panels. All test panels were made from glass/epoxy unidirectional prepregs and have aspect ratio of 5.088. The laminate thicknesses were found to vary from 1.054 mm to 1.066 mm. Comparison of experimental data with predicted results show good correlation and give confidence in the finite element model.

솔리드 요소를 이용한 적층복합재 구멍의 형상 최적화 (Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates Using Solid Element)

  • 한석영;마영준
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.16-22
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminated composite plate, (2) The optimal shapes on the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure index was reduced up to 67% when shape optimization was performed under the initial volume by volume control of growth-strain method.

복합적층 원통판넬의 좌굴후 압축강도 (Postbuckling Compressive Strengths of Composite Laminated Cylindrical Panels)

  • 권진희;홍창선
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.958-966
    • /
    • 1994
  • The postbuckling compressive strengths of $[0/90/\pm\theta]_s$ composite laminated cylindrical panels with various fiber angles and width-to-length ratios are characterized by the nonlinear finite element method. For the iteration and load-increment along the postbuckling equilibrium path a modified arc-length method in which the effect of failure can be considered is introduced. In the progressive failure analysis the maximum stress criterion and complete unloading model are used. Present finite element results show good agreement with experiments for $[0_3/90]_s$ cylindrical panel and $[0/\pm45/90/]_s$ plate. The postbuckling compressive strength of $[0/90/\pm\theta]_s$ composite laminated cylindrical panel is independent of the initial buckling stress but high in the panel with large value of the bending stiffness in axial direction. In the several cylindrical panels, it is observed that the prebuckling compressive failures occur and result into the collapse before the buckling.