• 제목/요약/키워드: composite forming

검색결과 314건 처리시간 0.032초

마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구 (Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process)

  • 박으뜸;김태준;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제31권1호
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

유리섬유 강화 열가소성 복합재료의 2축 인장성형시 재료거동에 관한 연구 (A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Biaxial Stretch Forming)

  • 이중희;류성기
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.169-175
    • /
    • 2000
  • The object of this study was to investigate the feasibility of solid-phase forming of the composites and to characterize the material behavior in the biaxial stretch forming. The materials tested contained 20%, 30%, and 40% glass fibers by weight in a polypropylene matrix. Biaxial stretch forming tests were performed at three forming speeds of 10mm/sec, 1mm/sec, and 0.1mm/sec and at four forming temperatures of $75^{\circ}C, 100^{\circ}C, 125^{\circ}C, and 150^{\circ}C$ to investigate effects of forming speed and forming temperature. The microscopic observation of a formed part was conducted at various strain levels to characterize the material behavior. The strain distribution on a formed part was measured and displayed on the farmed geometry with a contour display The material behavior of the composite in the biaxial stretch forming was strongly influenced by the forming conditions.

  • PDF

합판(合板) 대용(代用) 박판상(薄板狀) 복합재(複閤材) 제조(製造)에 관(關)한 연구(硏究) (II) -최상제조조건(最適製造條件)을 적용(適用)한 구성형태별(構成形態別) 박판상(薄板狀) 복합재(複閤材) 개발(開發)- (Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (II) - Development of Thin Composite by Composition Type Applied to Optimum Manufacturing Condition -)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.74-84
    • /
    • 1995
  • Eight types of thin composite panels were manufactured by press-lam and mat-forming process applied to optimum manufacturing condition, studied in former first research by author (1995). They were tested and compared with control boards on dimensional stability, internal bond strength, tensile strength, Screw withdrawal strength, and bending properties. These thin composite panels manufactured by mat-forming process were generally superior to those by press-lam in dimensional stability and mechanical properties. In the dimensional stability and mechanical properties of thin composite panels manufactured by mat-forming process, the thin composite panels (A and E type) composed of particle or sawdust core and veneer face with polyethylene film, were as good as those of common plywood (control board). Internal bond strength showed highest value in the thin composite panel(D type) which composed of particle core and polypropylene screen face with polyethylene film. The thin composite panels(G and H type) composed of sawdust or particle core and polypropylene screen face with polyethylene film by press-lam and mat-forming process, showed most highest value in dimensional stability and water absorption.

  • PDF

유리섬유/폴리프로필렌 복합재료 (Twintex)를 이용한 고정판 성형조건에 관한 연구 (A study on the forming condition of a bone plate made of a glass/polypropylene composite (Twintex))

  • 박석원;유성환;이재응;장승환
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.55-60
    • /
    • 2010
  • 본 연구에서는 열가소성 복합재료인 유리섬유/폴리프로필렌 복합재료를 이용한 복합재료 고정판의 적절한 성형조건을 찾기 위해 다양한 성형조건으로 제작된 시편의 인장실험과 굽힘실험을 수행하여 성형조건에 따른 기계적 거동을 비교하였다. 실험 결과 성형온도와 압력이 각각 $230^{\circ}C$, 3MPa일 때 가장 우수한 기계적 특성을 가짐을 확인하였다. 성형실험을 통해 결정된 성형조건을 이용한 복합재료 고정판의 성형방법으로는 고정판의 스크류 구멍을 한번에 성형하는 정형성형방법과 스크류 구멍을 후가공하는 방법을 사용하였으며, 성형실험과 굽힘실험 결과 스크류 구멍을 후가공 하는 경우 우수한 굽힘특성을 가지는 것을 확인하였다. 본 논문에서는 복합재료 고정판의 적절한 성형을 위해 유리섬유/폴리프로필렌 복합재료의 기초 성형정보와 그에 따른 고정판 성형에 대한 연구를 수행하였으며, 이 결과는 해당재료를 이용한 구조물 성형에 중요한 정보를 제공할 것으로 기대된다.

가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구 (Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming)

  • 박지우;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

Effect of temperature and blank holder force on non-isothermal stamp forming of a self-reinforced composite

  • Kalyanasundaram, Shankar;Venkatesan, Sudharshan
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.29-43
    • /
    • 2016
  • Composite materials are rapidly gaining popularity as an alternative to metals for structural and load bearing applications in the aerospace, automotive, alternate energy and consumer industries. With the advent of thermoplastic composites and advances in recycling technologies, fully recyclable composites are gaining ground over traditional thermoset composites. Stamp forming as an alternative processing technique for sheet products has proven to be effective in allowing the fast manufacturing rates required for mass production of components. This study investigates the feasibility of using the stamp forming technique for the processing of thermoplastic, recyclable composite materials. The material system used in this study is a self-reinforced polypropylene composite material (Curv$^{(R)}$). The investigation includes a detailed experimental study based on strain measurements using a non-contact optical measurement system in conjunction with stamping equipment to record and measure the formability of the thermoplastic composites in real time. A Design of Experiments (DOE) methodology was adopted to elucidate the effect of process parameters that included blank holder force, pre heat temperature and feed rate on stamp forming. DOE analyses indicate that feed rate had negligible influence on the strain evolution during stamp forming and blank holder force and preheat temperature had significant effect on strain evolution during forming.

Chain stitch 다축경편물의 전단 및 성형 거동에 관한 연구 (Study on the Shear and Forming Behavior of Chain Stitched Multi-axial Warp Knitted Fabric Preform)

  • 이지석;홍석진;유웅렬;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.107-110
    • /
    • 2005
  • In this study we investigated the shear and forming behavior of chain stitched multi-axial warp knitted fabric preform, so called non-crimp fabric (NCF). The picture frame test was performed to characterize the shear behavior of NCF and also provide material properties for the numerical simulation of its deformation behavior. The forming behavior of NCF with chain stitch were investigated using hemispherical forming tools. The experimental results show that processing conditions such as blank holder force (BHF) and preform shape are crucial to determining the forming behavior of NCF. For instance, an asymmetric formed shape, which is due to the stitches introduced to NCF, turns into a symmetric one as BHF increases. Furthermore the in-plane and out-of buckling (wrinkle), the severance of which were quantified using image processing method, decreases significantly as BHF increases.

  • PDF

Thermoforming Technology of Textile Composite Tubes

  • OZAKI Jun-ichi;MANABE Ken-ichi
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.63-66
    • /
    • 2003
  • Thermoforming of fiber reinforced thermoplastic (FRTP) braided tubes was studied as a new forming technique. FRTP braided tubes with four plies are fabricated by the pressure bonding method are used in thermoforming. Bulge forming, bending process, pipe fittings and FE analysis are carried out in this study. In bulge forming the composite tube can be expanded up to about two times initial diameter. The suggested bending process can be obtained bent products with various bending radii. In pipe fitting it is possible to fabricate T-shape fitting, cross fitting and two-branch fitting. These results exhibit developed forming processes become useful processes for textile composite tubes.

  • PDF

충전형 합성보와 포밍앵글 기둥 접합부의 내진성능에 대한 실험적 평가 (Experimental Evaluation on Seismic Performance of Filled Composite Beam - to - Forming Angle Composite Column Connections)

  • 김형섭;이경구;구지모
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.71-77
    • /
    • 2016
  • In this study, the seismic performance of connections between filled composite beam (CG beams) and forming angle composite (FAC) column was experimentally evaluated. First, the bending tests were conducted on two CG beams and the axial tests were conducted on two FAC columns. Then, based on these preliminary test results, the cyclic loading test were performed on two interior connections between CG beam and FAC column. The main difference of two specimens is the plate shape of the CG beam. The test results showed that both specimens achieved the maximum story drift capacity over 0.04 radian which is required for special moment frame.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.