• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.028 seconds

Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system

  • Luat, Nguyen-Vu;Lee, Hongseok;Shin, Jiuk;Park, Ji-Hun;Ahn, Tae-Sang;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.563-577
    • /
    • 2022
  • This paper presents experimental and numerical investigations of a new seismic enhancement method for existing reinforced concrete (RC) frames by using an external sub-structure, the hybrid seismic retrofit method (HSRM) system. This retrofit system is an H-shaped frame bolt-connected to an existing RC frame with an infilled-concrete layer between their gaps. Two RC frames were built, one with and one without HSRM, and tested under cyclic loading. The experimental findings showed that the retrofitted RC frame was superior to the non-retrofitted specimen in terms of initial stiffness, peak load, and energy dissipation capacity. A numerical simulation using a commercial program was employed for verification with the experiments. The results obtained from the simulations were consistent with those from the experiments, indicating the finite element (FE) models can simulate the seismic behaviors of bare RC frame and retrofitted RC frame using HSRM.

A numerical investigation of the tensile behavior of the thread-fixed one-side bolted T-stubs at high temperature

  • You, Yang;Liu, Le;Jin, Xiao;Wang, Peijun;Liu, Fangzhou
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.605-619
    • /
    • 2022
  • The tensile behavior of the Thread-fixed One-side Bolt (TOB) at high temperatures was studied using the Finite Element Modeling (FEM) to explore the structural responses that could not be measured in tests. The accuracy of the FEM was verified using the test results from the failure mode, load-displacement curve as well as yielding load. Three typical failure modes of TOB connected T-stubs were observed, which were the Flange Yielding (FY), the Bolt Failure (BF) and the Coupling Failure mode (CF). The influence of the flange thickness tb and the temperature θ on the tensile behavior of the T-stub were discussed. The initial stiffness and the yielding load decreased with the increase of the temperature. The T-stubs almost lost their resistance when the temperature exceeded 700℃. The failure modes of T-stubs were mainly decided by the flange thickness, which relates to the anchorage of the hole threads and the bending resistance of flange. The failure mode could also be changed by the high temperature. Design equations in EN 1993-1-8 were modified and verified by the FEM results. The results showed that these equations could predict the failure mode and the yielding load at different temperatures with satisfactory accuracy.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

Multiaxial ratcheting assessment of Z2CND18.12N steel using modified A-V hardening rule

  • Xiaohui Chen;Yang Zhou;Wenwu Liu;Xu Zhao
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • Based on Ahmadzadeh-Varvani hardening rule (A-V model), multiaxial ratcheting effect of Z2CND18.12N austenitic stainless steel is simulated by ABAQUS with user subroutine UMAT. The results show that the predicted results of the origin multiaxial A-V model are lower than the experimental data, and it is difficult to control ratcheting strain rate. In order to improve the predicted capability of A-V model, the A-V model is modified. In this study. Moreover, under the assumption of the von Mises yield criterion and normal plasticity flow rule, we develop a numerical algorithm of plastic strain with the improved model to implement the finite element calculation of the model. Internal iteration in the numerical algorithm was implemented with the Euler backward method, which calculated the trial strain for each equilibrium iteration using the consistent tangent matrix. With a user subroutine, the proposed model is programmed into ABAQUS for a user - executable version. By simulating the uniaxial ratcheting of a round bar made of Z2CND18.12N austenitic stainless steel, we observe that the predicted results simulated by ABAQUS with UMAT are compared with the experimental data. The predicted results of the improved multiaxial A-V model are consistent well with the experimental data.

Direct displacement-based seismic design methodology for the hybrid system of BRBFE and self-centering frame

  • Akbar Nikzad;Alireza Kiani;Seyed Alireza Kazerounian
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.463-480
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBF-Es) exhibit stable cyclic behavior and possess a high energy absorption capacity. Additionally, they offer architectural advantages for incorporating openings, much like Eccentrically Braced Frames (EBFs). However, studies have indicated that significant residual drifts occur in this system when subjected to earthquakes at the Maximum Considered Earthquake (MCE) hazard level. Consequently, in order to mitigate these residual drifts, it is recommended to employ self-centering systems alongside the BRBF-E system. In our current research, we propose the utilization of the Direct Displacement-Based Seismic Design method to determine the design base shear for a hybrid system that combines BRBF with an eccentric configuration and a self-centering frame. Furthermore, we present a methodology for designing the individual components of this composite system. To assess the effectiveness of this design approach, we designed 3-, 6-, and 9-story buildings equipped with the BRBF-E-SCF system and developed finite element models. These models were subjected to two sets of ground motions representing the Maximum Considered Earthquake (MCE) and Design Basis Earthquake (DBE) seismic hazard levels. The results of our study reveal that although the combined system requires a higher amount of steel material compared to the BRBF-E system, it substantially reduces residual drift. Furthermore, the combined system demonstrates satisfactory performance in terms of story drift and ductility demand.

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Mehmet Faruk OZDEMIR;Muslum Murat MARAS;Hasan Basri YURTSEVEN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.526-541
    • /
    • 2023
  • Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

Free vibration analysis of FGM plates using an optimization methodology combining artificial neural networks and third order shear deformation theory

  • Mohamed Janane Allah;Saad Hassouna;Rachid Aitbelale;Abdelaziz Timesli
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.633-643
    • /
    • 2023
  • In this study, the natural frequencies of Functional Graded Materials (FGM) plates are predicted using Artificial Neural Network (ANN). A model based on Third-order Shear Deformation Theory (TSDT) and FEM is used to train the ANN model. Different training methods are tested to simulate input and output dependency. As this is a parametric model, several architectures and optimization algorithms were tested. The proposed model allows us to minimize the CPU time to evaluate candidate material properties for FGM plate material selection and demonstrate their influence on dynamic behavior. Consequently, the time required for the FGM design process (candidate materials for material selection) and the geometric optimization of the FGM structure would remain reasonable. The ANN model can help industries to produce FGM plates with good mechanical properties of the selected materials. I addition, this model can be used to directly predict vibration behavior by testing a large number of FGM plates, representing all possible combinations of metals and ceramics in today's industry, without having to solve any eigenvalue problems.

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.