• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.028 seconds

Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading

  • Chung, Kyung-Soo;Kim, Jin-Ho;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.133-153
    • /
    • 2013
  • The concrete-filled steel tube (CFT) columns have several benefits of high load-bearing capacity, inherent ductility and toughness because of the confinement effect of the steel tube on concrete and the restraining effect of the concrete on local buckling of steel tube. However, the experimental research into the behavior of square CFT columns consisting of high-strength steel and high-strength concrete is limited. Six full scale CFT specimens were tested under flexural moment. The CFT columns consisted of high-strength steel tubes ($f_y$ = 325 MPa, 555 MPa, 900 MPa) and high-strength concrete ($f_{ck}$ = 80 MPa and 120 MPa). The ultimate capacity of high strength square CFT columns was compared with AISC-LRFD design code. Also, this study was focused on investigating the effect of high-strength materials on the structural behavior and the mathematical models of the steel tube and concrete. Nonlinear fiber element analyses were conducted based on the material model considering the cyclic bending behavior of high-strength CFT members. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.325-340
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Pushover analysis of gabled frames with semi-rigid connections

  • Shooshtari, Ahmad;Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1557-1568
    • /
    • 2015
  • The nonlinear static analysis of structure, which is under the effect of lateral loads and provides the capacity curve of the structure, is defined as a push-over analysis. Ordinarily, by using base shear and the lateral displacement of target point, the capacity curve is obtained. The speed and ease of results interpretation in this method is more than that of the NRHA responses. In this study, the nonlinear static analysis is applied on the semi-rigid steel gabled frames. It should be noted that the members of this structure are analyzed as a prismatic beam-column element in two states of semi-rigid connections and supports. The gabled frame is modeled in the OpenSees software and analyzed based on the displacement control at the target point. The lateral displacement results, calculated in the top level of columns, are reported. Furthermore, responses of the structure are obtained for various support conditions and the rigidity of nodal connections. Ultimately, the effect of semi-rigid connections and supports on the capacity and the performance point of the structure are presented in separated graphs.

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.

Numerical modelling for monitoring the hysteretic behaviour of CFRP-retrofitted RC exterior beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.27-37
    • /
    • 2011
  • This paper presents the results of a study on the capability of nonlinear quasi-static finite element modelling in simulating the hysteretic behaviour of CFRP and GFRP-retrofitted RC exterior beam-column joints under cyclic loads. Four specimens including two plain and two CFRP/GFRP-strengthened beam-column joints tested by Mahini and Ronagh (2004) and other researchers are modelled using ANSYS. Concrete in compression is defined by the modified Hognestad model and anisotropic multi-linear model is employed for modelling the stress-strain relations in reinforcing bars while anisotropic plasticity is considered for the FRP composite. Both concrete and FRP are modelled using solid elements whereas space link elements are used for steel bars considering a perfect bond between materials. A step by step load increment procedure to simulate the cyclic loading regime employed in the testing. An automatically reforming stiffness matrix strategy is used in order to simulate the actual seismic performance of the RC concrete after cracking, steel yielding and concrete crushing during the push and pull loading cycles. The results show that the hysteretic simulation for all specimens is satisfactory and therefore suggest that the numerical model can be used as an inexpensive tool to design of FRP-strengthened RC beam-column joints under cyclic loads.

Numerical experiments on the determination of stress concentration factors in orthotropic perforated plates subjected to in - plane loading

  • Bambill, D.V.;Rossit, C.A.;Susca, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.549-561
    • /
    • 2009
  • As it is known, laminated composite materials are increasingly used in many technological applications, and in some instance, cutouts must be made into laminated panels for practical reasons, changing the stress distribution. The present study deals with the determination of the stress concentration factor that holes of square shape cause in an orthotropic plate subjected to distributed in - plane loading. Square holes of rounded corners in a rectangular plate are considered, and the effect of different combinations of axial and tangential forces applied to its middle plane at the external edges, is studied. The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many different directions referred to the sides of the plate. Numerical experiments by means of a finite element code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable behavior.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.

Experimental studies and numerical analysis of the shear behavior of fin plates to tubular columns at ambient and elevated temperatures

  • Jones, M.H.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.179-200
    • /
    • 2008
  • This paper reports the results of a recent experimental study into the behavior of welded fin-plate connections to both hollow and concrete filled tubular (CFT) columns under shear. Experiments have been performed at both ambient and elevated temperatures with the aid of an electric kiln. The observed failure modes include fracture of the fin plate and tearing out of the tube around the welds. By considering the results of previously published research, the current design method for similar connections under purely tensile load, in CIDECT Guide 9, based on a deformation limit of 3% of the tube width is shown to be inadequate when evaluating the ultimate strength of such connections. By comparing the results from the current test program which failed in the fin-plate with Eurocode guidance for failure of a fin-plate alone under shear and bending load it is shown that the column face influences the overall connection strength regardless of failure mode. Concrete in-fill is observed to significantly increase the strength of connections over empty specimens, and circular column specimens were observed to exhibit greater strength than similarly proportioned square columns. A finite element (F.E.) model, developed using ABAQUS, is presented and validated against the experimental results in order that extensive parametric tests may be subsequently performed. When validating the model against elevated temperature tests it was found that using reduction factors suggested in published research for the specific steel grades improved results over applying the generic Eurocode elevated temperature steel strength reduction factors.