• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.03 seconds

Statistical bias indicators for the long-term displacement of steel-concrete composite beams

  • Moreno, Julian A.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Miranda, Marcela P.;Reginato, Lucas H.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.379-397
    • /
    • 2019
  • Steel-concrete composite beams are widely employed in constructions and their performance at the serviceability stage is of concern among practitioners and design regulations. In this context, an accurate evaluation of long-term deflections via various rheological concrete models is needed. In this work, the performance and predict capability of some concrete creep and shrinkage models ACI, CEB, B3, FIB and GL2000 are ascertained, and compared by using statistical bias indicators. Ten steel-concrete composite beams with existing experimental and numerical results are then modeled for this purpose. The proposed modeling technique uses the finite element method, where the concrete slab and steel beam are modeled with shell finite elements. Concrete is considered as an aging viscoelastic material and cracking is treated with the common smeared approach. The results show that when the experimental ultimate shrinkage strain is used for calibration, all studied rheological models predict nearly similar deflections, which agree with the experimental data. In contrast, significance differences are encountered for some models, when none calibration is made prior to. A value between twenty and thirty times the cracking strain is recommended for the ultimate tensile strain in the tension stiffening model. Also, increasing the relative humidity and decreasing the ambient temperature can lead to a substantial reduction of slab cracking for beams under negative flexure. Finally, there is not a unique rheological model that clearly excels in all scenarios.

The Characteristics for Mode I Interlaminar and Intralaminar Fractures of Cross-Ply Carbon/Epoxy Composite Laminates Based on Energy Release Rate (변형률 에너지 해방률에 기반한 Carbon/Epoxy 직교적층판의 모드 I 층간 및 층내 파괴 특성 분석)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • This paper describes the characteristics for mode I interlaminar and intralaminar fractures of cross-ply carbon/epoxy composite laminates. We obtained mode I interlaminar fracture toughness and mode I intralaminar fracture toughness based on energy release rate and Finite Element Analysis (FEA). For this purpose, the Double-Cantilever Beam (DCB) test and FEA were performed for cross-ply DCB specimens. Also, the behavior of load-displacement curve at the interlaminar and intralaminar crack was analyzed. The results show that mode I intralaminar fracture toughness was lower than mode I interlaminar fracture toughness in the cross-ply DCB specimen.

A study on the Thermal Fatigue Properties of Mg/Mg-Al18B4O33 Functionally Graded Material by Thermal Cycling Test and Finite Element Method (열반복 시험 및 유한요소해석을 통한 Mg/Mg-Al18B4O33 경사기능 재료의 열피로특성에 관한 연구)

  • Lee, Wookjin;Yang, Junseong;Choi, Kyewon;Park, Yongha;Park, Bonggyu;Park, Ikmin;Park, Yongho
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.538-544
    • /
    • 2008
  • MMCs were manufactured in two different forms. One was two-layered non FGM composite and the other was four-layered FGM composite. The matrix used in this study was AZ31 magnesium alloy and the reinforcement was $Al_{18}B_4O_{33}$. The composite materials contained reinforcement fibers with a volume fraction of 0, 15, 25 and 40%. Squeeze infiltration method was used for the fabrication of each block. The thermal properties of the FGM alloy and composite joints were studied by conducting thermal cycling tests. The numerical calculation (the finite elements method-FEM) results exhibited a good agreement with the experimental results. Thermal stresses induced by thermal cycling test were clearly reduced in the functionally graded materials.

Compressive Strength Prediction of Composite Laminates Containing Circular Holes (원공이 있는 복합재 적층판의 압축강도 예측)

  • Kim, Sung Joon;Park, Sehoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.549-555
    • /
    • 2021
  • Open hole strength of composite laminates is often used as the design allowable strength for designing composite aircraft structures, particularly those structures subjected to impact loading. Generally, the degradation of strength due to a barely visible impact damage (BVID) is assumed as the strength of 6.0 mm hole diameter in 24.0 mm width specimen. In this study, the residual strength static tests of composite laminates containing circular holes have been performed to investigate the effects of fiber orientation structure on open hole strength. The point stress criterion using a characteristic length is used to predict the open hole strength. The finite element analysis has been used to validate the analytical method. From the test results, it is shown that the characteristic length is related to the percentage of 0°, ±45° and 90° plies of the laminate. And regression analysis has performed to determine the characteristic length and strength of no hole specimens on the arbitrary layup pattern.

Acquisition of Parameters for Impact Damage Analysis of Sheet Molding Compound Based on Artificial Neural Network (인공신경망 기반 SMC 복합재료의 충돌 손상 해석을 위한 파라메터 획득)

  • Lee, Sang-Cheol;Kim, Jeong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.115-122
    • /
    • 2021
  • SMC(Sheet molding compound) composite is mainly used for forming of vehicle's body. Considering the car accident, it is essential to research the impact behavior and characteristics of materials. It is difficult to identify them because the impact process is completed in a short time. Therefore, the impact damage analysis using FE(finite element) model is required for the impact behavior. The impact damage analysis requires the parameters for the damage model of SMC composite. In this paper, ANN(artificial neural network) technique is applied to obtain the parameters for the damage model of SMC composite. The surrogate model by ANN was constructed with the result in LS-DYNA. By comparing the absorption energy in drop weight test with the result of ANN model, the optimized parameters were obtained. The acquired parameters were validated by comparing the results of the experiment, the FE model and the ANN model.

Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA (유전자 알고리즘 PSGA를 이용한 복합재료 헬리콥터 블레이드 최적 구조설계)

  • Chang, Se Hoon;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.340-346
    • /
    • 2022
  • In this study, an optimal structural design of composite helicopter blades is performed using the genetic algorithm-based optimizer PSGA (Particle Swarm assisted Genetic Algorithm). The blade sections consist of the skin, spar, form, and balancing weight. The sectional geometries are generated using the B-spline curves while an opensource code Gmsh is used to discretize each material domain which is then analyzed by a finite element sectional analysis program Ksec2d. The HART II blade formed based on either C- or D-spar configuration is exploited to verify the cross-sectional design framework. A numerical simulation shows that each spar model reduces the blade mass by 7.39% and 6.65%, respectively, as compared with the baseline HART II blade case, while the shear center locations being remain close (within 5% chord) to the quarter chord line for both cases. The effectiveness of the present optimal structural design framework is demonstrated, which can readily be applied for the structural design of composite helicopter blades.

Compressive and failure behaviour of composite egg-box panel using non-orthogonal constitutive model (비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손)

  • Hahn, Young-Won;Chang, Seung-Hwan;Ryu, Yong-Mun;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.20-26
    • /
    • 2009
  • In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at eaeh corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder (이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구)

  • Lee, Doo Sung;Lee, Sung Chul;Suh, Suk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.457-463
    • /
    • 2008
  • The longitudinal stiffener performs its role to increase the local buckling strength by making simple support upon compression flange. In the recent researches, it is investigated that compression flange with point supports on certain arrangement reveals the same strength with longitudinal stiffeners. From this results, it is predictable that shear stud could perform the role of longitudinal stiffener if shear stud embedded in concrete satisfies the requirement to point-support under yield stress of the compression flange. In this study, the researches were performed to investigate the optimally required arrangement space of longitudinal point-support for which the shear stud replacing the longitudinal stiffeners and simultaneously determine the required numbers and space of shear stud for completely composite behavior between compression bottom flange and bottom concrete on the double composite girder system.