• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.028 seconds

Active Control of Sound Fields from Vibrating Plates Using Piezoelectric and Viscoelastic Material (압전재료와 점탄성 재료를 이용한 평판 진동 음장의 능동제어)

  • Kang, Young-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.950-955
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been tarried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by Passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Optimum design of cable-stayed bridges

  • Long, Wenyi;Troitsky, Michael S.;Zielinski, Zenon A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.241-257
    • /
    • 1999
  • This paper presents a procedure to minimize the cost of materials of cable-stayed bridges with composite box girder and concrete tower. Two sets of iterations are included in the proposed procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The second set of iteration performs the optimization process. The design is formulated as a general mathematical problem with the cost of the bridge as the objective function and bending forces, shear forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function method is used in the optimization process. The limit states design method is used to determine the load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity is verified by several practical-sized designs.

An approach for failure analysis of composite bridge deck systems with openings

  • Zhao, Lei;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.123-141
    • /
    • 2005
  • Design details pertaining to the connection between some recently developed fiber reinforced polymer (FRP) composite deck systems and the supporting girders require openings through cells of the deck. This significantly changes the stress distribution in these components. As a result, the conventional assumptions that deck designs are controlled by their stiffness, and not strength, needs a closer examination. This paper proposes an analytical method to investigate the stress states and failure mechanisms using a type of "global-local" modeling perspective, incorporating classical lamination theory and first ply failure criterion with use of appropriate stress concentration factors around the cutouts. The use of a "smeared-stress" approach is presented as a potential means of simplifying certain FRP specific complexities, while still enabling prediction of overall failure.

Nonlinear thermoelastic response of laminated composite conical panels

  • Joshi, R.M.;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.97-107
    • /
    • 2010
  • Nonlinear thermoelastic static response characteristics of laminated composite conical panels are studied employing finite element approach based on first-order shear deformation theory and field consistency principle. The nonlinear governing equations, considering moderately large deformation, are solved using Newton-Raphson iterative technique coupled with the adaptive displacement control method to efficiently trace the equilibrium path. The validation of the formulation for mechanical and thermal loading cases is carried out. The present results are found to be in good agreement with those available in the literature. The adaptive displacement control method is found to be capable of handling problems with multiple snapping responses. Detailed parametric study is carried out to highlight the influence of semicone angle, boundary conditions, radius-to-thickness ratio and lamination scheme on the nonlinear thremoelastic response of laminated cylindrical and conical panels.

Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects

  • Katariya, Pankaj V.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.657-668
    • /
    • 2019
  • The numerical thermal frequency responses of the skew sandwich shell panels structure are investigated via a higher-order polynomial shear deformation theory including the thickness stretching effect. A customized MATLAB code is developed using the current mathematical model for the computational purpose. The finite element solution accuracy and consistency have been checked via solving different kinds of numerical benchmark examples taken from the literature. After confirming the standardization of the model, it is further extended to show the effect of different important geometrical parameters such as span-to-thickness ratios, aspect ratios, curvature ratios, core-to-face thickness ratios, skew angles, and support conditions on the frequencies of the sandwich composite flat/curved panel structure under elevated temperature environment.

Development of Type 4 Composite Pressure Vessel by using PET Liner for Self-contained Breathing Apparatus (PET 라이너를 적용한 공기호흡기용 타입 복합재료 4 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Cho, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, we solved the human hazard problem of aluminum liner by applying plastic PET liner which is widely used as a material for food and beverage containers in the market. In order to reinforce dome area by using low strength / high elongation plastic liner, The aluminum boss was covered on the plastic liner surface. In order to predict the performance of the developed product, the structural analysis was carried out by applying the three - dimensional laminated solid element, and the soundness of the product was verified through the prototype performance test.

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

Structural Safety Evaluation of PBD Composite Perforator's Leader for Soft Ground Improvement (연약지반 개량 PBD 복합천공기 리더의 구조 안전성 평가)

  • Kim, Min-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.894-900
    • /
    • 2018
  • Among the soft ground improvement methods, PBD is the most common construction method because it is cheap and construction is fast. However, if the ground is rigid, additional work is required. In this study, the structural safety, natural vibration, and safety angle of the steel vertical tower structure were evaluated in the development of the PBD composite perforator which can be combined with drilling work and PBD construction. Structural safety was assessed when the wind load of 20 m/s was simultaneously applied to the PBD construction load of 20 tons, the perforating operation of 25 tons, and the wind speed of 50 m/s was applied only to the wind load. The natural frequencies were evaluated up to the sixth mode, and the safety angle was evaluated for static and dynamic safety angles.

Experimentally evaluating the seismic retrofitting of square engineered cementitious composite columns using CFRP

  • Akhtari, Alireza;Mortezaei, Alireza;Hemmati, Ali
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.545-556
    • /
    • 2021
  • The present experimental study evaluated the seismic performance of six engineered cementitious composite (ECC) columns strengthened with carbon fiber reinforced polymer (CFRP) laminates under cyclic lateral loading. The ECC columns damaged and crushed in the first stage of cyclic tests were repaired using the ECC with a certain polyvinyl alcohol (PVA) fiber and strengthened with flexural and sheer CFRP laminates and then re-assessed under the cyclic loading. The effects of some variables were examined on lateral displacement, energy absorption and dissipation, failure modes, crack patterns, load bearing capacity and plasticity, and the obtained results were compared with those of the first stage of cyclic tests. The results showed that retrofitting the ECC columns can improve their performance, plasticity and load-bearing threshold, delayed the concrete failure, changed the failure modes and increased the energy absorbed by the strengthened columns element by over 50%.