• Title/Summary/Keyword: composite damper

Search Result 70, Processing Time 0.033 seconds

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

Preparation and Characterization of Modified Natural Rubber Applied to Seismic Isolation Damper Rubber

  • Seong-Guk Bae;Woong Kim;Yu mi Yun;Jin Hyok Lee;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.128-135
    • /
    • 2023
  • To improve the adhesive strength of natural rubber (NR) for a seismic isolation damper, citraconic acid-g-NR (CCA-g-NR) was synthesized via the melt grafting of citraconic acid (CCA) onto NR using an azobisisnomerobutyronitrile (AIBN) initiator. Subsequently, the influence of CCA and AIBN concentrations on the graft ratio G/R (%) and graft efficiency G/E (%) of the CCA-g-NR was investigated. The optimum CCA and AIBN concentrations required to achieve the desired G/R (3.49%) and G/E (49.8%) were found to be 7 phr and 0.13 phr, respectively. Additionally, we studied the influence of CCA-g-NR concentration on the mechanical properties (tensile strength, elongation at break, and modulus at 300%), adhesive strength, and cure characteristics of the rubber compound in the seismic isolation damper. As the concentration of CCA-g-NR increased, the elongation at break and adhesive strength of the compound increased, whereas its tensile strength and modulus at 300% decreased. Moreover, as the concentration increased, the maximum torque decreased and the scorch time was delayed to obtain an optimal vulcanization time.

Numerical Analysis Study on Damping Performance of Cable Damper (케이블댐퍼 감쇠성능의 수치해석적 연구)

  • Yhim, Sung-Soon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Compared with a strong axial rigidity due to large intial tension, cable has a weak laterally flexural rigidity. A variety of dynamic loads such as traffic loads and wind loads etc. cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables. Therefore, vibration reduction design is an urgent task to control the vibration of cable-supported bridges. Because a various kind of dampers have shown to reduce the amplitude and duration time of vibration of cable from measured date in field test, damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable. Vibration characteristics of cable can change according to manufacturing method and type of established form, and damper has been designed according to distribution of natural frequencies and vibration modes. In this study, numerical analysis is used to show the reduction effects of vibrations and present the design of damper for vibration reduction of cable.

Evaluation on Structural Performance of Two-nodal Rotary Frictional Component (2절점 회전형 마찰요소의 구조성능 평가)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • Various hybrid dampers have been developed in Korea to control the vibration due to a wind and earthquake. In order to minimize the installment space, cost and construction process, the new hybrid friction damper is developed. This hybrid damper is composed of several rotary friction components having two frictional joint. Because of these components, the building vibration due to wind and earthquake can be mitigated by hybrid friction damper. In this paper, various dependency tests were carried out to evaluate on the structural performance of two joint rotational friction component of the hybrid damper. Test results show that two joint rotational components do not depend on a displacement and a frequency of forcing but friction coefficients is reducing as a clamping force is increasing.

Prediction of plastic strength of elliptical steel slit damper by finite element analysis

  • Hossain, Mohammad I.;Amanat, Khan M.
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.249-261
    • /
    • 2022
  • This paper presents a numerical study to develop a guideline for estimating the plastic strength of elliptical steel slit damper with reasonable accuracy. The strut width increases from middle to end in elliptical steel slit damper and it is observed from the past studies that variation of the width is not considered for calculating the plastic strength of the damper. It is also noticed that the existing formulas for predicting plastic strength of this kind of damper may not be accurate and further refinement is warranted. Study is then carried on elliptical steel slit damper made of mild steel and having different geometry to find out equivalency of it with oblong steel slit damper having similar plastic strength. A few three-dimensional finite element models of seismic moment connection system with steel slit damper are developed and validated against past experiments for carrying the present study considering both the material nonlinearity as well as geometric nonlinearity. The results of the parametric studies have been compared with energy quantities and presented graphically to better understand the effects of different parameters on the system. Based on the pattern of parametric study results, closed-form semi-empirical algebraic expression of damper plastic strength is developed for elliptical steel slit damper which shows very good agreement with finite element analysis as well as experiments. This developed expression can now be used for elliptical steel slit damper in replacement with any type of damper in the design of moment connection.

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.