• Title/Summary/Keyword: composite connections

Search Result 383, Processing Time 0.023 seconds

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Semi-rigidity of cap plate and extended end plate connections

  • Nassani, Dia Eddin;Chikho, Abdul Hakim;Akgonen, Aliriza llker
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.493-499
    • /
    • 2017
  • The behaviour of steel frames is highly influenced by the beam-column connections. Traditionally, Steel frames were usually designed assuming that connections are ideally pinned or fully rigid. A semi-rigid connection, however, creates a balance between the two extreme approaches mentioned above. In this research, two full scales of Extended End Plate Connections (EEPCs) were tested. Mathematical and numerical models were used to analyse the connections, and close correlations were found between these models and the corresponding tested specimens, which confirmed the confidence in the experimental results. The experimental results obtained enrich the available test data about behaviour of EEPC. In addition, the purpose of studying EEPC experimentally is to compare the stiffness and moment-rotation curve of EEPCs with that of Cap Plate Connections (CPCs), which were tested in a previous work. CPCs have not been studied sufficiently in the literature. The results obtained show that the typical CPC reduces the connection stiffness and these results will make a valuable contribution to the available test data in the research area of CPC.

A Parametrical Study on the flexural strength of Concrete-Filled SHS Columns to Composite H-Beam Connections (충전각형강관 기둥-합성 H형강보 접합부 휨성능 결정요인에 관한 연구)

  • Lee, Jong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.385-395
    • /
    • 1999
  • Square hollow section columns and H-section beams have recently been increasing1y used. Rigid column-beam connections cannot be made for the structural system and thus some measures to improve the rotational stiffness of connections should be developed. For this purpose, several types of connections. such as H-section beams connected to concrete-filled square hollow section columns, have been contrived and put to experiment. Since the experimental works are usually difficult and expensive. Particularly test of all the types of connections with similar behavior may not be feasible. Instead, the numerical analysis will be adopted predict the flexural stiffness of connections. In this work, FEM modeling techniques are examined and parametric analysis study has been carried out. The major parameters considered are concrete strength, thickness of steel column, magnitude and eccentricity of axial forces.

  • PDF

Failure analysis of steel column-RC base connections under lateral cyclic loading

  • Demir, Serhat;Husem, Metin;Pul, Selim
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2014
  • One of the most important structural components of steel structures is the column-base connections which are obliged to transfer horizontal and vertical loads safely to the reinforced concrete (RC) or concrete base. The column-base connections of steel or composite steel structures can be organized both moment resistant and non-moment resistant leading to different connection styles. Some of these connection styles are ordinary bolded systems, socket systems and embedded systems. The structures are frequently exposed to cycling lateral loading effects causing fatal damages on connections like columns-to-beams or columns-to-base. In this paper, connection of steel column with RC base was investigated analytically and experimentally. In the experiments, bolded connections, socket and embedded connection systems are taken into consideration by applying cyclic lateral loads. Performance curves for each connection were obtained according to experimental and analytical studies conducted and inelastic behavior of connections was evaluated accordingly. The cyclic lateral performance of the connection style of embedding the steel column into the reinforced concrete base and strengthening of steel column in upper level of base connection was found to be higher and effective than other connection systems. Also, all relevant test results were discussed.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.325-340
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Seismic behavior of beam-to-column connections with elliptic slit dampers

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.289-301
    • /
    • 2018
  • The rigid steel connections were suffered severe damage because of low rotational capacity during earthquakes. Hence, many investigations have been conducted on the connections of steel structures. As a solution, steel slit dampers were employed at the connections to prevent brittle failure of connections and damage of main structural members. Slit damper is a plate or a standard section with a number of slits in the web. The objective of this paper is to improve the seismic performance of steel slit dampers in the beam-to-column connection using finite element modeling. With reviewing the previous investigations, it is observed that slit dampers were commonly fractured in the end parts of the struts. This may be due to the low participation of struts middle parts in the energy dissipation. Thus, in the present study slit damper with elliptic slits is proposed in such a way that end parts of struts have more energy absorption area than struts middle parts. A parametric study is conducted to investigate the effects of geometric parameters of elliptic slit damper such as strut width, strut height and plate thickness on the seismic performance of the beam-to-column connection. The stress distribution is improved along the struts in the proposed slit damper with elliptic slits and the stress concentration is decreased in the end parts of struts. The average contributions of elliptic slit dampers, beam and other sections to the energy dissipation are about 97.19%, 2.12% and 0.69%, respectively.

Experimental and analytical behavior of stiffened angle joints

  • Wang, Peng;Pan, Jianrong;Wang, Zhan;Chen, Shizhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.67-78
    • /
    • 2018
  • The application of rib stiffeners is common on steel connections, with regard to the stiffened angle connection, experimental results about the influence of stiffeners under monotonic and cyclic loading are very limited. Consequently, this paper presents the experimental investigation on four types angle connections with or without stiffener under static loading and another four type stiffened angle connections subjected to cyclic loading. The static experimental result showed that the rib stiffener weld in tension zone of the connection greatly enhanced its initial rotational stiffness and flexural strength. While a stiffener was applied to the compression zone of the connection, it had not obvious influences on the initial rotational stiffness, but increased its flexural strength. The moment-rotation curves, skeleton curves, ductility, energy dissipation and rigidity were evaluated under cyclic loading. Stiffened top-and-seat angle connections behaved as semi-rigid and partial strength, and rotation of all stiffened angle connections exceeded 0.04rad. The failure modes between monotonic and cyclic loading test were completely different and indicated certain robustness.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Adopting flexibility of the end-plate connections in steel moment frames

  • Ghassemieh, M.;Baei, M.;Kari, A.;Goudarzi, A.;Laefer, D.F.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1215-1237
    • /
    • 2015
  • The majority of connections in moment resisting frames are considered as being fully-rigid. Consequently, the real behavior of the connection, which has some level of flexibility, is ignored. This may result in inaccurate predictions of structural response. This study investigates the influence of flexibility of the extended end-plate connections in the steel moment frames. This is done at two levels. First, the actual micro-behavior of extended end-plate moment connections is explored with respect to joint flexibility. Then, the macro-behavior of frames with end-plate moment connections is investigated using modal, nonlinear static pushover and incremental dynamic analyses. In all models, the P-Delta effects along with material and geometrical nonlinearities were included in the analyses. Results revealed considerable differences between the behavior of the structural frame with connections modeled as fully-rigid versus those when flexibility was incorporated, specifically difference occurred in the natural periods, strength, and maximum inter-story drift angle.