• Title/Summary/Keyword: composite columns

Search Result 747, Processing Time 0.019 seconds

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

A Nonunique Composite Foreign Key-Based Approach to Fact Table Modeling and MDX Query Composing (비유일 외래키 조합 복합키 기반의 사실테이블 모델링과 MDX 쿼리문 작성법)

  • Yu, Han-Ju;Lee, Duck-Sung;Choi, In-Soo
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.185-197
    • /
    • 2006
  • A star schema consists of a central fact table, which is surrounded by one or more dimension tables. Each row int the fact table contains a multi-part primary key(or a composite foreign key) along with one or more columns containing various facts about the data stored in the row Each of the composit foreign key components is related to a dimensional table. The combination of keys in the fact table creates a composite foreign key that is unique to the fact table record. The composite foreign key, however, is rarely unique to the fact table record in real-world applications, particularly in financial applications. In order to make the composite foreign key be the determinant in real-world application, some precalculation might be performed in the SQL relational database, and cached in the OLAP database. However, there are many drawbacks to this approach. In some cases, this approach might give users the wrong results. In this paper, an approach to fact table modeling and related MDX query composing, which can be used in real-world applications without performing any precalculation and gives users the correct results, is proposed.

  • PDF

A Nonunique Composite Foreign Key-Based Approach to Fact Table Modeling and MDX Query Composing (비유일 외래키 조합 복합키 기반의 사실테이블 모델링과 MDX 쿼리문 작성법)

  • Yu, Han-Ju;Lee, Duck-Sung;Choi, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.177-188
    • /
    • 2007
  • A star schema consists of a central fact table, which is surrounded by one or more dimension tables. Each row in the fact table contains a multi-part primary key(or a composite foreign key) along with one or more columns containing various facts about the data stored in the row. Each of the composit foreign key components is related to a dimensional table. The combination of keys in the fact table creates a composite foreign key that is unique to the fact table record. The composite foreign key, however, is rarely unique to the fact table retold in real-world applications, particularly in financial applications. In order to make the composite foreign key be the determinant in real-world application, some precalculation might be performed in the SQL relational database, and cached in the OLAP database. However, there are many drawbacks to this approach. In some cases, this approach might give users the wrong results. In this paper, an approach to fact table modeling and related MDX query composing, which can be used in real-world applications without performing any precalculation and gives users the correct results, is proposed.

  • PDF

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel (유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Yun-Cheol;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT) (원형 콘크리트 충전 강관 (CFT)의 비선형 유한 요소 해석 기법 개발)

  • Moon, Jiho;Ko, Heejung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.139-148
    • /
    • 2012
  • Circular concrete-filled tubes (CFTs) are composite members, which consists of a steel tube and concrete infill. CFTs have been used as building columns and bridge piers due to several advantages such as their strength-to-size efficiency and facilitation of rapid construction. Extensive experimental studies about CFT have been conducted for past decades. However experimental results alone are not sufficient to support the engineering of these components. Complementary advanced numerical models are needed to simulate the behavior of CFT to extend the experimental research and develop predictive tools required for design and evaluation of structural systems. In this study, a finite element modeling technique for CFT was developed. The confinement effects, and behavior of CFT subjected various types of loading predicted by the proposed finite element model for CFT were verified by comparing with test results.

Analytical Study for Optimal Reinforcement Amount and Development of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재 개발 및 최적 보강량 산정을 위한 해석적 연구)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.136-145
    • /
    • 2013
  • Social interest in the seismic retrofit of the structure is growing massive earthquake that occurred recently. The brittle fracture of Non-seismically designed Columns lead to full collapse of the building. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly in recent years, fiber-reinforced method utilizing the advantages of the composite material are preferred. However, the reinforcement methods such as this, there is a drawback to induce physical damage to structures, and time consuming work space is large. IIn this study, FRP seismic reinforcement was developed using the Aluminum connector and the composite material (Glass Fiber Reinforced Polymer). Then, the optimum quantities of FRP seismic reinforcement was determined using a nonlinear finite element analysis program. Finally, the quantity decision process through the design and analysis of FRP reinforcement was suggested.