• Title/Summary/Keyword: composite case

Search Result 1,599, Processing Time 0.026 seconds

Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position

  • Hachemi, Houari;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • This paper presents a high-order shear and normal deformation theory for the bending of FGM plates. The number of unknowns and governing equations of the present theory is reduced, and hence makes it simple to use. Unlike any other theory, the number of unknown functions involved in displacement field is only four, as against five or more in the case of other shear and normal deformation theories. Based on the novel shear and normal deformation theory, the position of neutral surface is determined and the governing equilibrium equations based on neutral surface are derived. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Navier-type analytical solution is obtained for functionally graded plate subjected to transverse load for simply supported boundary conditions. The accuracy of the present theory is verified by comparing the obtained results with other quasi-3D higher-order theories reported in the literature. Other numerical examples are also presented to show the influences of the volume fraction distribution, geometrical parameters and power law index on the bending responses of the FGM plates are studied.

On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes

  • Heidari, Farshad;Taheri, Keivan;Sheybani, Mehrdad;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.533-545
    • /
    • 2021
  • What is desirable in engineering is to bring the engineering model as close to reality as possible while the simplicity of model is also considered. In recent years, several studies have been performed on nanocomposites but some of these studies are somewhat far from reality. For example, in many of these studies, the carbon nanotubes (CNTs) are assumed completely straight, flawless and uniformly distributed throughout the matrix but by studying nanocomposites, we find that this is not the case. In this paper, three steps have been taken to bring the presented models for nanocomposites closer to reality. One is that assuming the straightness of nanotubes is removed and the waviness is considered. Also, the nanotubes are not considered to be pristine and the influence of defect is included in accordance with reality. In addition, the approximation of uniform distribution of nanotubes is ignored and according to experimental observations, the effect of nanotube aggregation is considered. As far as we know, this is the first study on these three topics together in an article. Moreover, we also include the size effects in our models for nanocomposites. To show the accuracy of our models, our results are calibrated with experimental results and compared with theoretical model. For numerical examples, we present the buckling behaviors of nanocomposites including the size effects using nonlocal theory and compare the results of our models with the results of models with above-mentioned approximations.

Management of complicated crown fracture by tooth fragment reattachment with fiber post: a case report (섬유 강화형 포스트를 이용한 치관 파절된 치아의 재부착: 증례보고)

  • Kim, Yu-Ri;Jung, Kyoung-Hwa;Son, Sung-Ae;Park, Jeong-Kil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2021
  • Dental trauma is very common in children and relatively young people, with the line of treatment depending on the time elapsed, age of the child, and tooth maturity. If the fractured segment is available and there is close approximation of the segment to the remaining tooth, reattachment of the fractured segment is a feasible option. This treatment offers several advantages, including the reestablishment of function, aesthetics, shape, shine and surface texture, in addition to the original contour and alignment of the teeth. The following cases present two different complex crown fracture cases that were treated using tooth fragment reattachment with fiber-reinforced composite post.

Soil Chemical Properties - Variation with Altitude and Forest Composition: A Case Study of Kedarnath Wildlife Sanctuary, Western Himalaya (India)

  • Malik, Zubair A.;Haq, Shiekh Marifatul
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • The present study was carried out to evaluate the chemical properties of soil in relation to forest structure and composition at different altitudes (900-2,600 m asl) in a part of Western Himalaya. The composite soil samples were taken from three (viz. upper, middle and lower) depths. The soils of the whole study area were acidic in nature (pH=4.90-5.51). Contents of Nitrogen (N), Phosphorus (P), Potassium (K), Carbon (C) and soil organic matter (SOM) showed much fluctuation during different seasons of year. Nitrogen content showed significant positive correlations with altitude (r=0.924, p<0.05) and different community parameters like species diversity (r=0.892, p<0.01) and species richness (r=0.941, p<0.05). Phosphorus exhibited direct correlations with carbon (r=0.637) while weak negative correlations with different community parameters like species richness & diversity, total basal cover (TBC), density and canopy cover. Carbon content and hence SOM showed direct correlations with Nitrogen (r=0.821, p<0.01); Phosphorus (r=0.637, ns) and Potassium (r=0.540, ns). But no significant relationship was observed between K content and species richness (p=0.30, r=-0.504); between K content and species diversity (p=0.14, r=-0.672); between P content and species diversity (p=0.29, r=-0.513) and species richness (p=0.23, r=-0.575). Among the different soil nutrients, only N showed a significant positive correlation with altitude while all others exhibited negative (but non-significant) correlation with it. The study revealed that the chemical properties affect and are reciprocally affected by forest structure and composition and that N rich soils of higher altitudes are best for the growth and development of forests.

Analysis of Efficiency of Pollution Reduction Scenarios by Flow Regime Using SWAT Model - A case study for Dalcheon Basin - (SWAT 모형을 활용한 유황별 비점오염 저감 효율 분석 - 달천 유역을 대상으로 -)

  • Kim, Soohong;Hong, Jiyeong;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.469-482
    • /
    • 2021
  • The recent climate change and urbanization have seen an increase in runoff and pollutant loads, and consequently significant negative water pollution. The characteristics of the pollutant loads vary among the different flow regime depending on their source and transport mechanism, However, pollutant load reduction based on flow regime perspectives has not been investigated thoroughly. Therefore, it is necessary to analyze the effects of concentration on pollutant load characteristics and reductions from each flow regime to develop efficient pollution management. As non-point pollutants continuously increase due to the increase in impervious area, efficient management is necessary. Therefore, in this study, 1) the characteristics of pollutant sources were analyzed at the Dalcheon Basin, 2) reduction of nonpoint pollution, and 3) reduction efficiency for flow regimes were analyzed. By analyzing the characteristics of the Dalcheon Basin, a reduction efficiency scenario for each pollutant source was constructed. The efficiency analysis showed 0.06% to 5.62% for the living scenario, 0.09 to 24.62% for the livestock scenario, 0.17% to 12.81% for the industry scenario, 9.45% to 38.45% for the land scenario, and 9.8% to 39.2% for the composite scenario. Therefore, various pollution reduction scenarios, taking into account the characteristics of pollutants and flow regime characteristics, can contribute to the development of efficient measurements to improve water quality at various flow regime perspectives in the Dalcheon Basin.

Effects of Progressive Core and Ankle Muscle Strengthening Exercises Using Thera-Band on Body Balance

  • Lee, Kwang-Sub;Wang, Ji-Won;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Kim, Seung Gil;Hong, Ji heon
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.3
    • /
    • pp.121-127
    • /
    • 2022
  • Purpose: This study aims to compare the effect on balance during core and ankle muscle strengthening exercises using the Thera-Band. Methods: 21 healthy college students were recruited. The participants were divided into a core strengthening group (CSG), an ankle strengthening group (ASG), and a non-exercise group (NEG). CSG and ASG were performed twice a week for a total of 4 weeks, and static and dynamic balance were measured before and after the intervention. The static balance were measured as stability index and weight distribution index using Tetrax®. The dynamic balance was measured in each direction by the Y balance test. The Thera-Band intensity was increased after 2 weeks of exercise, and the exercise was subsequently performed. Results: Participants showed static balance with Tetrax®, a significant difference was noted between normal eye closes and pillow with eye closes in ASG (p<0.05). In the case of dynamic balance with the Y balance test, a significant difference was observed in posterolateral direction (PL) and composite score (CS) between each group for the pre- and post-intervention differences (p<0.05). A significant difference was observed between PL and CS in CSG (p<0.05). Conclusion: These findings show that the progressive Thera-Band exercise had a positive effect on balance abilities. It was confirmed that core strengthening was effective for dynamic balance, and ankle strengthening was effective for static balance.

A quasi 3D solution for thermodynamic response of FG sandwich plates lying on variable elastic foundation with arbitrary boundary conditions

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Sekkal, Mohamed;Benyoucef, Samir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.873-886
    • /
    • 2021
  • In this paper, an analytical solution for thermodynamic response of functionally graded (FG) sandwich plates resting on variable elastic foundation is performed by using a quasi 3D shear deformation plate theory. The displacement field used in the present study contains undetermined integral terms and involves only four unknown functions with including stretching effect. The FG sandwich plate is considered to be subject to a time harmonic sinusoidal temperature field across its thickness with any combined boundary conditions. Equations of motion are derived from Hamilton's principle. The numerical results are compared with the existing results of quasi-3D shear deformation theories and an excellent agreement is observed. Several numerical examples for fundamental frequency, deflection, stress and variable elastic foundation parameter's analysis of FG sandwich plates are presented and discussed considering different material gradients, layer thickness ratios, thickness-to-length ratios and boundary conditions. The results of the present study reveal that the nature of the elastic foundation, the boundary conditions and the thermodynamic loading affect the response of the FG plate especially in the case of a thick plate.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

A case study of protecting bridges against overheight vehicles

  • Aly, Aly Mousaad;Hoffmann, Marc A.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.165-183
    • /
    • 2022
  • Most transportation departments have recognized and developed procedures to address the ever-increasing weights of trucks traveling on bridges in a service today. Transportation agencies also recognize the issues with overheight vehicles' collisions with bridges, but few stakeholders have definitive countermeasures. Bridges are becoming more vulnerable to collisions from overheight vehicles. The exact response under lateral impact force is difficult to predict. In this paper, nonlinear impact analysis shows that the degree of deformation recorded through the modeling of the unprotected vehicle-girder model provides realistic results compared to the observation from the US-61 bridge overheight vehicle impact. The predicted displacements are 0.229 m, 0.161 m, and 0.271 m in the girder bottom flange (lateral), bottom flange (vertical), and web (lateral) deformations, respectively, due to a truck traveling at 112.65 km/h. With such large deformations, the integrity of an impacted bridge becomes jeopardized, which in most cases requires closing the bridge for safety reasons and a need for rehabilitation. We proposed different sacrificial cushion systems to dissipate the energy of an overheight vehicle impact. The goal was to design and tune a suitable energy absorbing system that can protect the bridge and possibly reduce stresses in the overheight vehicle, minimizing the consequences of an impact. A material representing a Sorbothane high impact rubber was chosen and modeled in ANSYS. Out of three sacrificial schemes, a sandwich system is the best in protecting both the bridge and the overheight vehicle. The mitigation system reduced the lateral deflection in the bottom flange by 89%. The system decreased the stresses in the bridge girder and the top portion of the vehicle by 82% and 25%, respectively. The results reveal the capability of the proposed sacrificial system as an effective mitigation system.

Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow (LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로)

  • Jung, Hyunjo;Lee, Jaehwan;Suh, Jihae
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.81-94
    • /
    • 2022
  • Real estate and artworks were considered challenging investment targets for individual investors because of their relatively high average transaction price despite their long investment history. Recently, the so-called fractional investment, generally known as investing in a share of the ownership right for real-life assets, etc., and most investors perceive that they actually own a piece (fraction) of the ownership right through their investments, is gaining popularity. Founded in 2016, Musicow started the first service that allows users to invest in copyright fees related to music distribution. Using the LSTM algorithm, one of the deep learning algorithms, this research predict the price of right to participate in copyright fees traded in Musicow. In addition to variables related to claims such as transfer price, transaction volume of claims, and copyright fees, comprehensive indicators indicating the market conditions for music copyright fees participation, exchange rates reflecting economic conditions, KTB interest rates, and Korea Composite Stock Index were also used as variables. As a result, it was confirmed that the LSTM algorithm accurately predicts the transaction price even in the case of fractional investment which has a relatively low transaction volume.