• 제목/요약/키워드: composite box beam

검색결과 91건 처리시간 0.021초

Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners

  • Rezaifar, Omid;Nazari, Mohammad;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.535-544
    • /
    • 2017
  • Box sections are symmetrical sections and they have high moment of inertia in both directions, therefore they are good members in tall building structures. For the rigid connection in structures with box column continuity plates are used on level of beam flanges in column. Assembly of the continuity plates is a difficult and unreliable work due to lack of weld or high welding and cutting in the fourth side of column in panel zone, so the use of experimental stiffeners have been considered by researchers. This paper presented an experimental investigation on connection in box columns. The proposed connection has been investigated in four cases which contain connection without internal and external stiffeners(C-0-00), connection with continuity plates(C-I-CP), connection with external vase shape stiffener (C-E-VP) and connection with surrounding plates(C-E-SP). The results show that the connections with vase plates and surrounding plates can respectively increase the ultimate strength of the connection up to 366% and 518% than the connection without stiffeners, in case connection with the continuity plates this parameter increases about 39%. In addition, the proposed C-E-VP and C-E-SP connection provide a rigid and safe connection to acquire rigidity of 95% and 98% respectively. But C-I-CP connection is classified as semi-rigid connections.

Minimum cost design of overhead crane beam with box section strengthened by CFRP laminates

  • Kovacs, Gyorgy;Farkas, Jozsef
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.475-481
    • /
    • 2017
  • An overhead travelling crane structure of two doubly symmetric welded box beams is designed for minimum cost. The rails are placed over the inner webs of box beams. The following design constraints are considered: local buckling of web and flange plates, fatigue of the butt K weld under rail and fatigue of fillet welds joining the transverse diaphragms to the box beams, fatigue of CFRP (carbon fibre reinforced plastic) laminate, deflection constraint. For the formulation of constraints the relatively new standard for cranes EN 13001-3-1 (2010) is used. To fulfill the deflection constraint CFRP strengthening should be used. The application of CFRP materials in strengthening of steel and concrete structures are widely used in civil engineering applications due to their unique advantages. In our study, we wanted to show how the mechanical properties of traditional materials can be improved by the application of composite materials and how advanced materials and new production technologies can be applied. In the optimization the following cost parts are considered: material, assembly and welding of the steel structure, material and fabrication cost of CFRP strengthening. The optimization is performed by systematic search using a MathCAD program.

복합재료 적층판으로 구성된 절판구조물의 구조해석 (Analysis of Folded Plate Structures Composed of Laminated Composite Plates)

  • 이정호;홍창우;이주형;김동호
    • 한국농공학회지
    • /
    • 제43권1호
    • /
    • pp.122-128
    • /
    • 2001
  • The theory of non-prismatic folded plate structures was reported by D.H. Kim in 1965 and 1966. Fiber reinforced composite materials are strong in tension. The structural element for such tension force is very thin and weak against bending because of small bending stiffnesses. Naturally, the box type section is considered as the optimum structural configuration because of its high bending stiffnesses. Such structures can be effectively analyzed by the folded plate theory with relative ease. The “hollow” bending membr with uniform cross-section can be treated as prismatic folded plates which is a special case of the non-prismatic folded plates. In this paper, the result of analysis of a folded plates with one box type uniform cross-section is presented. Each plate is made of composite laminates with fiber orientation of [ABBCAAB]r, with A=-B=45${\circ}C$, and C=90${\circ}$. The influence of the span to depth ratio is also studied. When this ratio is 5, the difference between the results of folded plate theory and beam theory is 1.66%.

  • PDF

복합재료를 이용한 박스빔 형태 금형의 온도상승에 따른 치수 변화 예측에 관한 연구 (Study on the Prediction of Dimension Variation due to the Temperature Rises of the Composite Material and Box Beam Type Mold Steel)

  • 김호상;이찬희;이원기
    • Composites Research
    • /
    • 제31권1호
    • /
    • pp.12-16
    • /
    • 2018
  • 복합소재와 금형강 간에는 열팽창계수의 차이로 인하여 성형 과정 중의 온도 구배에 따라 다른 열팽창길이를 갖는다. 따라서 금형 내에 복합소재를 삽입하여 성형을 하는 경우 복합소재의 표면에 작용하는 압력이 소재의 업체에서 추천하는 성형 압력을 유지하는지를 확인할 필요성이 있다. 본 연구에서는 온도의 차이에 따른 복합소재와 금형 사이의 압력을 유한요소해석법을 사용하여 예측하였으며 열팽창에 따른 금형의 길이를 측정함으로써 해석의 정확성을 검증하였다. 각 온도에서의 해석과 실험값의 차이로써 매우 근사한 값을 얻을 수 있었으며, 틈새 예측 값의 목표치인 ${\pm}0.05mm$ 안에 들어오는 것을 확인하였다. 이를 통하여 복합소재에 작용하는 압력을 추정한 해석값이 신뢰할 수준임을 알 수 있었다.

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

복합재료 로우터 블레이드에 대한 공력탄성학적 최적설계 (Aeroelasitic Optimum Design for Composite Rotor Blades)

  • 권혁준;조맹효;최지훈;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1222-1227
    • /
    • 2000
  • The optimization study are carried out for helicopter rotor blades with composite box-beam spar. The objective function is to minimize the weight of rotor blades subject to frequency, aeroelastic stability and failure constraints. Design variables include the number of ply and ply angles of the laminated walls. The beam model of a hinge less rotor blade is based on a large deflection beam theory to describe the arbitrary large deflections and rotations. The p-k method and unsteady two dimensional strip theory are used to calculate aeroelastic stability boundary.

  • PDF

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구 (A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight)

  • 정성남;김경남;김승조
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

박스형 철골빔이 적용된 프리스트레스 할로우-코어 합성슬래브의 해석연구 (An Analytic Study of Composite Hollow Core Slab Subjected with Box Type Beams)

  • 홍성걸;서도원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.311-314
    • /
    • 2005
  • This research aims to analyze of prestressed composite hollow-core slab and box type steel beam. The smeared crack model used in abaqus for the modeling of hollow core reinforced concrete, including cracking of the concrete, rebar and concrete interaction using the tension stiffening concept, and rebar yield. The structure modeled is a simply supported hollow core spancrete slab subjected spa-h beams and prestressed in one direction. The hollow core spancrete slab is subjected to four-point bending. The concrete-rebar interaction that occur as the concrete begins to crack are of major importance in determining the spancrete slab's response between its initial, deformation and its collapse. This smeared crack model used in analysis involved non-liner concrete analysis concept.

  • PDF