• Title/Summary/Keyword: composite beams and plates

Search Result 128, Processing Time 0.019 seconds

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.

Retrofitting reinforced concrete beams by bolting steel plates to their sides -Part 2: Transverse interaction and rigid plastic design

  • Oehlers, Deric John;Ahmed, Marfique;Nguyen, Ninh T.;Bradford, Mark Andrew
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.227-243
    • /
    • 2000
  • In a companion paper, tests on bolted side plated beams have shown that side plates can substantially increase the strength of existing reinforced concrete beams with little if any loss of ductility and, furthermore, induce a gradual mode of failure after commencement of concrete crushing. However, it was also shown that transverse interaction between the side plates and the reinforced concrete beam, that is vertical slip and which is a concept unique to side plated beams, is detrimental. Transverse interaction increases the forces on the bolt shear connectors and, hence, weakens the beam. It also reduces the ability of the composite plated beam to yield and, hence, to attain its full flexural capacity. The generic concept of transverse interaction will be described in this paper and the results used to develop a new form of rigid plastic analysis for bolted side plated beams which is illustrated with an application.

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study

  • Tahar, Hassaine Daouadji;Boussad, Abbes;Abderezak, Rabahi;Rabia, Benferhat;Fazilay, Abbes;Belkacem, Adim
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.409-420
    • /
    • 2019
  • The paper presents the results of an experimental and numerical programme to characterize the behaviour of steel beams reinforcement by composite plates. Important failure mode of such plated beams is the debonding of the composite plates from the steel beam due to high level of stress concentration in the adhesive at the ends of the composite plate. In this new research, an experimental and numerical finite element study is presented to calculate the stresses in the sika carbodur and sika wrap reinforced steel beam under mechanical loading. The main objective of the experimental program was the evaluation of the force transfer mechanism, the increase of the load capacity of the steel beam and the flexural stiffness. It also validated different analytical and numerical models for the analysis of sika carbodur and sika wrap reinforced steel beams. In particular, a finite element model validated with respect to the experimental data and in relation to the analytical approach is presented. Experimental and numerical results from the present analysis are presented in order to show the advantages of the present solution over existing ones and to reconcile debonding stresses with strengthening quality.

Experimental investigation of masonry walls supported by steel plate-masonry composite beams

  • Jing, Deng-Hu;Chen, Jian-Fei;Amato, Giuseppina;Wu, Ting;Cao, Shuang-Yin
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.709-718
    • /
    • 2018
  • Masonry walls are sometimes removed in buildings to either make new passages or increase the usable space. This may change the loading paths in the structure, and require new beams to transfer the loads which are carried by the masonry walls that are to be removed. One possible method of creating such new beams is to attach steel plates onto part of the existing walls to form a steel plate-masonry composite (SPMC) beam, leading to a new structure with part of the masonry wall supported by a new SPMC beam. This paper presents an experimental investigation into the interaction between the SPMC beam and the masonry wall above. Five SPMC beams supporting a masonry wall were tested to study the influence of parameters including the height-to-span ratio of the masonry wall, height of the beam and thickness of the steel plates. The test results, including failure mode, load-carrying capacity, load-deflection curves and strain distribution, are presented and discussed. It is found that for developing better arching effect in the masonry wall the ratio of the in-plane flexural stiffness of the masonry wall to the flexural stiffness of the SPMC beam must be between 2.8 and 7.1.

Effect of stiffeners on failure analyses of optimally designed perforated steel beams

  • Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.183-201
    • /
    • 2016
  • Perforated steel beams can be optimised by increased beam depth and the moment of inertia combined with a reduced web thickness, favouring the use of original I-section beams. The designers are often confronted with situations where optimisation cannot be carried out effectively, taking account of the buckling risk at web posts, moment-shear transfers and local plastic deformations on the transverse holes of the openings. The purpose of this study is to suggest solutions for reducing these failure risks of tested optimal designed beams under applying loads in a self-reacting frame. The design method for the beams is the hunting search optimisation technique, and the design constraints are implemented from BS 5950 provisions. Therefore, I have aimed to explore the strengthening effects of reinforced openings with ring stiffeners, welded vertical simple plates on the web posts and horizontal plates around the openings on the ultimate load carrying capacities of optimally designed perforated steel beams. Test results have shown that compared to lateral stiffeners, ring and vertical stiffeners significantly increase the loadcarrying capacity of perforated steel beams.

Influence of temperature on the beams behavior strengthened by bonded composite plates

  • Bouazza, Mokhtar;Antar, Kamel;Amara, Khaled;Benyoucef, Samir;Bedia, El Abbes Adda
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.555-566
    • /
    • 2019
  • The purpose of this paper is to investigate the thermal effects on the behaviour reinforced-concrete beams strengthened by bonded angle-ply laminated composites laminates plate $[{\pm}{\theta}n/90m]_S$. Effects of number of $90^{\circ}$ layers and number of ${\pm}{\theta}$ layers on the distributions of interfacial stress in concrete beams reinforced with composite plates have also been studied. The present results represent a simple theoretical model to estimate shear and normal stresses. The effects the temperature, mechanical properties of the fibre orientation angle of the outer layers, the number of cross-ply layers, plate length of the strengthened beam region and adhesive layer thickness on the interfacial shear and normal stresses are investigated and discussed.

Composite Behavior and Shear Strength of DH-Beams with Steel Deck Plates (무해체 데크플레이트 철판을 사용한 DH-beam의 합성거동과 전단강도)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • The purpose of this study is to examine the shear strength and structural performance of DH-Beams. The DH-Beam construction method uses thin steel plates as form-works and structural elements. Steel plates and rebars for DH-Beams were prefabricated at factory and then erected before casting concrete at construction sites. In this study, the contribution of steel plates to the shear strength of DH-Beam was evaluated since the plates were expected to work as reinforcements. Five test specimens were made for experimental and analytical studies. They consisted of two DH-Beams for the positive loading test and two DH-Beams for the negative loading test and a RC beam for the comparison purpose. Test results on DH-Beams were compared with design equations and the RC beam test result. It was proven that DH-Beams demonstrated the good shear behavior showing sufficient strengths and deformation capacities. Nonlinear analyses with test specimens were also used to evaluate the contribution of DH plates to strengths. Analytical models included various cases such as beams with lateral plates only or beams without any plates. These analyses also showed that steel plates can contribute to the enhancement of shear strength of DH-Beams. Based on experimental and analytical studies, it was concluded that steel plates of DH-Beams can be used as good shear reinforcements.

Transverse and longitudinal partial interaction in composite bolted side-plated reinforced-concrete beams

  • Oehlers, D.J.;Nguyen, N.T.;Ahmed, M.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.553-563
    • /
    • 1997
  • A procedure is being developed for bolting plates to the sides of existing reinforced concrete beams to strengthen and stiffen them. Unlike standard composite steel and concrete beams in which there is longitudinal-partial-interaction at the steel/concrete interface (that is slip along the length of the beam), composite bolted side-plated reinforced-concrete beams are unique in that they also exhibit transverse-partial-interaction, that is slip transverse to the length of the beam. In this work, the fundamental mathematical models for transverse-partial-interaction and its interaction with longitudinal-partial-interaction are developed. The fundamental models are then further developed to determine the number of connectors required to resist the transverse forces and to limit the degree of transverse-partial-interaction in bolted side-plated reinforced concrete beams.