• 제목/요약/키워드: composite actions

검색결과 72건 처리시간 0.021초

Study on mechanical performance of composite beam with innovative composite slabs

  • Yang, Yong;Yu, Yunlong;Zhou, Xianwei;Roeder, Charles W.;Huo, Xudong
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.537-551
    • /
    • 2016
  • A new type of composite beam which consists of a wide flange steel shape beam and an innovative type of composite slab was introduced. The composite slab is composed of concrete slab and normal flat steel plates, which are connected by perfobond shear connectors (PBL shear connectors). This paper describes experiments of two large-scale specimens of that composite beam. Both specimens were loaded at two symmetric points for 4-point loading status, and mechanical behaviors under hogging and sagging bending moments were investigated respectively. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of composite beam specimens were investigated, and the strains of concrete and flat steel plate as well as steel shapes were measured and recorded. As shown from the experimental results, composite actions were fully developed between the steel shape and the composite slab, this new type of composite beams was found to have good mechanical performance both under hogging and sagging bending moment with high bending capacity, substantial flexure rigidity and good ductility. It was further shown that the plane-section assumption was verified. Moreover, a design procedure including calculation methods of bending capacity of this new type of composite beam was studied and proposed based on the experimental results, and the calculation methods based on the plane-section assumption and plastic theories were also verified by comparisons of the calculated results and experimental results, which were agreed with each other.

철도차량용 복합 내장 패널의 차음성능에 관한 연구 (A Study on the Sound Insulation Performance of the Composite Panel for Railroad Vehicle)

  • 김봉기;김재승;황병선;이상진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.182-187
    • /
    • 2002
  • Since most of main noise sources of the railroad vehicle are transmitted to the passenger's ear through the vibration of the panel, the insulation performance of the panels should be high enough to protect the passengers from the noisy environment. Specifically, the composite materials which are generally used for reducing the weight of the vehicle compartment have the low insulation performance, noise control actions should be taken appropriately by considering the insulation performance of the panels. In this study, the insulation performances of the inner/outer panels were evaluated and the contribution of the aluminum door was estimated compared to the composite panels. The results can furnish an indepth understanding of the insulation characteristics of the panel of railroad vehicle.

  • PDF

철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가 (Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete)

  • 김인석;김학수
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.665-673
    • /
    • 2008
  • 최근 장대 건설 구조물에 사용이 증가되고 있는 합성형 구조물에서 나타나고 있는 예기치 못한 일부 균열 현상의 구조적 원인을 분석하기 위하여, 강재복부의 수직보강재, stud 및 dowel bar의 유무, 전단철근의 간격과 콘크리트 강도 등을 실험변수로 하여 4점 재하 휨시험을 통해 강재와 철근콘크리트간의 구조적 합성거동 효과를 분석 하였다. 실험결과, 수직보강재는 강재의 국부좌굴 방지와 파괴시 강재와 콘크리트의 부착파괴를 방지하여 구조적 합성거동에 따른 단면내력(파괴하중)의 증진에 효과적인 것으로 나타났으나, 추가적으로 설치한 stud 및 dowel bar, 콘크리트의 강도와 전단철근량 등은 합성보의 휨거동에 큰 영향을 주지 않는 것으로 나타났다.

복합재 소형 항공기 구조 인증 고려사항에 대한 고찰 (A Consideration on Composite Material Certification for Small Aircraft Structure)

  • 서장원
    • 항공우주산업기술동향
    • /
    • 제7권1호
    • /
    • pp.128-140
    • /
    • 2009
  • 본 논문에서는 FAR Part 23에 따른 복합재 소형항공기 구조 인증시 복합재료의 인증활동에서 발생할 수 있는 기술적 문제점 또는 고려사항을 검토하고, 이에 대한 인증 신청자가 수행해야 할 것으로 예상되는 사항을 검토하였다. 본 논문은 복합재 인증시 발생하는 기술적 문제에 초점을 맞추어 규정과의 관계 및 인증 경험에 관련한 기술 적 문제를 설명하였다. 복합재 인증활동에 대한 개괄적 내용과 복합재 항공기 구조물의 인증에 유용한 지침과 참고자료를 제시하고 있다. 본 논문에 소개된 일반적인 인증에 관련한 내용은 모든 복합재료 구조에 대해 적용되어지지 않을 수 있으며, 비행 안전에 치명적이지 않는 2차 구조에 대해서는 적용되어지지 않을 수 있다.

  • PDF

Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings

  • Yang, You-Fu;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.257-284
    • /
    • 2006
  • The behaviour of hollow structural steel (HSS) stub columns and beams filled with normal concrete and recycled aggregate concrete (RAC) under instantaneous loading was investigated experimentally. A total of 40 specimens, including 30 stub columns and 10 beams, were tested. The main parameters varied in the tests were: (1) recycled coarse aggregate (RCA) replacement ratio, from 0 to 50%, (2) sectional type, circular and square. The main objectives of these tests were threefold: first, to describe a series of tests on new composite columns; second, to analyze the influence of RCA replacement ratio on the compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST), and finally, to compare the accuracy of the predicted ultimate strength, bending moment capacity and flexural stiffness of the composite specimens by using the recommendations of ACI318-99 (1999), AIJ (1997), AISC-LRFD (1999), BS5400 (1979), DBJ13-51-2003 (2003) and EC4 (1994).

평면확장형 공동주택 리모델링 공사에서 신/구 슬래브 접합부의 횡방향 하중전달 능력 (Load Transfer Capacity for the Planar Joints between Existing and New Slab in Apartment Remodelling Construction for Enlarging the Interior Space)

  • 유영찬;김승훈;최기선;김긍환;임병호;유지영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.295-298
    • /
    • 2005
  • In General, post-installed dowel bars are used as a shear connector to ensure the composite actions between new slabs and existing slabs in an apartment remodelling constructions expecially for enlarging the interior space outward the existing buildings. But, it has not been checked that the connection performance between existing and new slab is satisfactory not only for the structural safety condition but also the for serviceability and dwelling requirements. In this research, an experimental works were presented to evaluate the load transfer capacity for the planar joints between existing and new slab. The existing slabs were obtained from the existing apartment housing which will be demolished. Test results showed that the planar joints with post-installed dowel bars behaved in full composite modes until ultimate capacity of test specimens, so sufficient ultimate and serviceability performance are confirmed.

  • PDF

CREEP에 의한 못 결합부(結合部)의 강성도(剛性度)의 변화(變化)에 관한 연구(硏究) (Study on the change in stiffness of nailed joints due to creep)

  • 장상식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권4호
    • /
    • pp.35-43
    • /
    • 1989
  • Nailed joints, which are commonly used in Wooden structures, transmit loads from one member to another and induce partial composite actions between members. Long-term loads induce creep slip in nailed joints and affect load sharing and partial composite action, which may reduce joint stiffness. Two theoretical viscous-viscoelastic models were developed for nailed joints to predict creep behavior under long-term variable loads. Those models were also used to predict stiffness changes under long-term variable loads. The stiffness of nailed joint is defined as a Secant modulus which is called the joint modulus or slip modulus. Input data for the models are the results of constant load tests under three different load levels. To verify the models, nailed joints were also tested under two long-term variable load functions. The predictions of the models were very close to the experimental data. Therefore, the theoretical viscous-viscoelastic models and procedures developed in this study can be applied to predict creep slip and the changes in joint moduli of nailed joints under long-term variable loads.

  • PDF

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.