International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.177-189
/
2023
Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.
Sakthivel V;Prakash Periyaswamy;Jae-Woo Lee;Prabu P
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.7
/
pp.1968-1985
/
2024
At present, the world is witnessing a rapid change in all the fields of human civilization business interests and goals of all the sectors are changing very fast. Global changes are taking place quickly in all fields - manufacturing, service, agriculture, and external sectors. There are plenty of hurdles in the emerging technologies in agriculture in the modern days. While adopting such technologies as transparency and trust issues among stakeholders, there arises a pressurized necessity on food suppliers because it has to create sustainable systems not only addressing demand-supply disparities but also ensuring food authenticity. Recent studies have attempted to explore the potential of technologies like blockchain and practices for smart and sustainable agriculture. Besides, this well-researched work investigates how a scientific cum technological blockchain architecture addresses supply chain challenges in Precision Agriculture to take up challenges related to transparency traceability, and security. A robust registration phase, efficient authentication mechanisms, and optimized data management strategies are the key components of the proposed architecture. Through secured key exchange mechanisms and encryption techniques, client's identities are verified with inevitable complexity. The confluence of IoT and blockchain technologies that set up modern farms amplify control within supply chain networks. The practical manifestation of the researchers' novel blockchain architecture that has been executed on the Hyperledger network, exposes a clear validation using corroboration of concept. Through exhaustive experimental analyses that encompass, transaction confirmation time and scalability metrics, the proposed architecture not only demonstrates efficiency but also underscores its usability to meet the demands of contemporary Precision Agriculture systems. However, the scholarly paper based upon a comprehensive overview resolves a solution as a fruitful and impactful contribution to blockchain applications in agriculture supply chains.
The Transactions of the Korea Information Processing Society
/
v.13
no.8
/
pp.388-394
/
2024
Since recommendation systems play a key role in increasing the revenue of companies, various approaches and models have been studied in the past. However, this diversity also leads to a complexity in the types of recommendation systems, which makes it difficult to select a recommendation model. Therefore, this study aims to solve the difficulty of selecting an appropriate recommendation model for recommendation systems by providing a unified criterion for categorizing various recommendation models and comparing their performance in a unified environment. The experiments utilized MovieLens and Coursera datasets, and the performance of linear models(ADMM-SLIM, EASER, LightGCN) and non-linear models(Caser, BERT4Rec) were evaluated using HR@10 and NDCG@10 metrics. This study will provide researchers and practitioners with useful information for selecting the best model based on dataset characteristics and recommendation context.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.1
/
pp.115-125
/
2011
Cryptographic hash functions are also called one-way functions and they ensure the integrity of communication data and command by detecting or blocking forgery. Also hash functions can be used with other security protocols for signature, authentication, and key distribution. The SHA-1 was widely used until it was found to be cryptographically broken by Wang, et. al, 2005. For this reason, NIST launched the SHA-3 competition in November 2007 to develop new secure hash function by 2012. Many SHA-3 hash functions were proposed and currently in review process. To choose new SHA-3 hash function among the proposed hash functions, there have been many efforts to analyze the cryptographic secureness, hardware/software characteristics on each proposed one. However there are few research efforts on the SHA-3 from the point of power consumption, which is a crucial metric on hardware module. In this paper, we analyze the power consumption characteristics of the SHA-3 hash functions when they are made in the form of ASIC hardware module. Also we propose power efficient hardware architecture on Luffa, which is strong candidate as a new SHA-3 hash function. Our proposed low power architecture for Luffa achieves 10% less power consumption than previous Luffa hardware architecture.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.9A
/
pp.1290-1298
/
2000
Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics, and uses the information to the next decoding step Turbo Code shows excellent performance, approaching Shannon Limit at the view of BER, when the size of Interleaver is big and iterate decoding is run enough. But it has the problems which are increased complexity and delay and difficulty of real-time processing due to Interleaver and iterate decoding. In this paper, it is analyzed that MAP(maximum a posteriori) algorithm which is used as one of Turbo Code decoding, and the factor which determines its performance. MAP algorithm proceeds iterate decoding by determining soft decision value through the environment and transition probability between all adjacent bits and received symbols. Therefore, to improve the performance of MAP algorithm, the trust between adjacent received symbols must be ensured. However, MAP algorithm itself, can not do any action for ensuring so the conclusion is that it is needed more algorithm, so to decrease iterate decoding. Consequently, MAP algorithm and Turbo Code performance are analyzed in the nongaussian channel applying Robust equalization technique in order to input more trusted information into MAP algorithm for the received symbols.
The Fourth Industrial Revolution brought the quantitative value of data across the industry and entered the era of 'Big Data'. This is due to both the rapid development of information & communication technology and the diversity & complexity of customer purchasing tendencies. An enterprise's core competence in the Big Data Era is to analyze and utilize the data to make strategic decisions for enterprise. However, most of traditional studies on Big Data have focused on technical issues and future potential values. In addition, these studies lacked interest in managing the quality and utilization levels of internal & external customer Big Data held by the entity. To overcome these shortages, this study attempted to derive influential factors by recognizing the quality management information systems and quality management of the internal & external Big Data. First of all, we conducted a survey of 204 executives & employees to determine whether Big Data quality management, Big Data utilization, and level management have a significant impact on corporate work efficiency & corporate management performance. For the study for this purpose, hypotheses were established, and their verifications were carried out. As a result of these studies, we found that the reasons that significantly affect corporate management performance are support from the management class, individual innovation, changes in the management environment, Big Data quality utilization metrics, and Big Data governance system.
Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
International Journal of Computer Science & Network Security
/
v.23
no.4
/
pp.55-68
/
2023
In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.