• Title/Summary/Keyword: complex nanostructure

Search Result 20, Processing Time 0.036 seconds

Synthesis of complex nanoparticles using bioceramic silica (바이오 세라믹 실리카를 이용한 복합 나노입자 구조체의 합성)

  • Yoon, Seokyoung;Lee, Jung Heon
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 2018
  • Here, we introduce various type of inorganic nanostructure synthesized with functional nanoparticles and silica. From two decades ago, functional inorganic nanoparticles have been synthesized and highlighted, now we moved to next level of wet-chemical synthesis. By integrating functional nanoparticles with silica, we were able to synthesize multi-functional nanostructure, which expand the applications of nanoparticles to catalyst, drug carrier, sensors. In this context, silica has been spotlighted due to its versatility. Silica has highly biocompatible, relatively transparent and stable under harsh conditions. Thus it can be used as good supporter to synthesize complex multi-functional nanostructure when mixed with other functional nanoparticles. A various shape of complex nanostructures have been synthesized including core-shell type, yolk-shell type and janus type etc. In this paper, we have described the purposes of synthesizing silica noncomplex and various case studies for biomedical applications and self-assembly.

Effect of the muscle nanostructure changes during post-mortem aging on tenderness of different beef breeds

  • Soji, Zimkhitha
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1849-1858
    • /
    • 2021
  • Objective: Tenderness is a very complex feature, and the process of its formation is very complicated and not fully understood. Its diversification is one of the most important problems of beef production, as a result beef aging is widely used to improve tenderness as it is believed to provide a homogeneous product to consumers. While few studies have evaluated the muscle structure properties in relation to tenderness from early post-mortem, there little to no information available on how the muscle nanostructure of beef carcasses changes during post-mortem ageing to determine the appropriate aging time for acceptable tenderness. Methods: Muscle nanostructure (myofibril diameter [MYD], myofibril spacing [MYS], muscle fibre diameter [MFD], muscle fibre spacing [MFS], and sarcomere length [SL]), meat tenderness and cooking loss [CL]) were measured on 20 A2 longissimus muscles of Bonsmara, Beefmaster, Hereford, and Simbra at 45mins, 1, 3, and 7 days post-slaughter. Muscle nanostructure was measured using a scanning electron microscope, while tenderness was measured using Warner Bratzler shear force. Results: At 45 minutes post-slaughter, breed affected MYD and MYS only, while at 24hrs it also affected MFD and MFS. On day 3 breed effected MFS and SL, while on day 7 breed effected tenderness only. As the muscles matured, both MYD and MYS decreased while CL increased, and the muscles became tender. There was no uniformity on muscle texture features (surface structure, fibre separation, muscle contraction, and relaxation) throughout the ageing period. Conclusion: Meat tenderness can be directly linked to breed related myofibril structure changes during aging in particular the MYD, spacing between myofibrils and their interaction; while the MFD, spacing between muscle fibres, SL, and CL explain the non-uniformity in beef tenderness.

Fabrication of Optically Images Using Nanostructured Photoluminescenct Porous Silicon (나노 구조를 갖는 다공성 실리콘의 광 발광성을 이용한 광학이미지 칩의 제작)

  • Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 2009
  • Optical images based on the porous silicon exhibiting photoluminescence have been prepared from an electrochemical etching of n-type silicon wafer (boron-doped,<100> orientation, resistivity $1{\sim}10{\Omega}-cm$) by using a beam projector. The images remained in the substrate displayed an optical images correlating to the optical pattern and could be useful for optical data storage. This provides the ability to fabricate complex optical encoding in the surface of silicon.

  • PDF

Nanopatterning of Self-assembled Transition Metal Nanostructures on Oxide Support for Nanocatalysts

  • Van, Trong Nghia;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.211-211
    • /
    • 2011
  • Nanostructures, with a diversity of shapes, built on substrates have been developed within many research areas. Lithography is one powerful, but complex, technique to make structures at the nanometer scale, such as platinum nanowires for studying CO catalytic reactions [1], or aluminum nanodisks for studying the plasmon effect [2]. In this work, we approach a facile method to construct nanostructures using noble metals on a titania thin film by using self-assembled structures as a pattern. Here, a large-scale silica monolayer is transferred to the titania thin film substrates using a Langmuir-Blodgett trough, followed by the deposition of a thin transition metal layer. Owing to the hexagonal close-packed structure of the silica monolayer, we would obtain a metal nanostructure that includes separated metallic triangles (islands) after removing the patterning silica beads. This nanostructure can be employed to investigate the role of metal-oxide interfaces in CO catalytic reactions by changing the patterning silica particles with different sizes or by replacing the oxide support. The morphology and chemical composition of the structure can be characterized by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. In addition, we modify these islands to a connected island structure by reducing the silica size of the patterning monolayer, which is utilized to generating hot electron flow based on the localized surface plasmon resonance effect of the metal nanostructures.

  • PDF

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

Evolution the surface morphology and mechanical properties of Polyimide induced by Ion Beam Irradiation

  • Ahmed, Sk. Faruque;Nho, Gun-Ho;Moon, Myoung-Woon;Han, Jun-Hyun;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.98-98
    • /
    • 2010
  • Ion beam irradiation has been extensively used for surface modification of polymers, glassy metals and amorphous and crystalline materials at micron and submicron scales. The surface structures created by exposure to an ion beam range from dots, steps and one-dimensional straight wrinkles to highly complex hierarchical undulations and ripples. In general, the morphology of these nanoscale features can be selected by controlling the ion beam parameters (e.g. fluence and acceleration voltage), making ion beam irradiation a promising method for the surface engineering of materials. In the work, we presented that ion beam irradiation results in creation of a peculiar nanoscale dimple-like structure on the surface of polyimide - a common polymer in electronics, large scale structures, automobile industry, and biomedical applications. The role of broad Ar ion beam on the morphology of the structural features was investigated and insights into the mechanisms of formation of these nanoscale features were provided. Moreover, a systematic experimental study was performed to quantify the role of ion beam treatment time, and thus the morphology, on the coefficient of friction of polyimide surfaces covered by nanostructure using a tribo-experiment. Nano-indentation experiment were performed on the ion beam treated surfaces which shows that the hardness as well as the elastic modulus of the polyimide surface increased with increase of Ar ion beam treatment time. The increased of hardness of polyimide have been explained in terms of surface structure as well as morphology changes induced by Ar ion beam treatment.

  • PDF

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Concentration/Purification Technologies: Multi-Functionalities of Nanostructures in Biosensing Fields

  • Son, Sang Jun;Min, Junhong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.87-87
    • /
    • 2013
  • Sample concentration and purification processes are essential in the bio-analytical and pharmaceutical fields because most bio samples or media are extremely sophisticated. To concentrate and purify specific substances, passive membrane type filters have been utilized, which is driven by size or charge differences between target and others. The traditional and representative method to identify nucleic acid sequences in the complex biosample is gel electrophoresis, which has been worked by size and net charge of molecules. The adsorption phenomena have been also utilized to concentrate and purify biomolecules. This adsorption of biomolecule can be controlled under specific salts and surfaces as well as surface area. To utilize the differences of physical properties of molecules or bio-targets such as virus, bacteria, and cells, the nanotechnologies can be introduced in target concentration, purification, and isolation processes. In here, I'd like to briefly survey typical examples of nanobiotechnologies which are introduced in sample treatment. Also I specifically demonstrate two different simple techniques to concentrate and detect bacteria from the samples using multifunctional silica nanotube (SNT).

  • PDF

Quantum Nanostructure of InGaAs on Submicron Gratings by Constant Growth Technique

  • Son, Chang-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1027-1031
    • /
    • 2001
  • A new constant growth technique to conserve an initial grating height of V-groove AlGaAs/InGaAs quantum nanostructures above 1.0 $\mu\textrm{m}$ thickness has been successfully embodied on submicron gratings using low pressure metalorganic chemical vapor deposition. A GaAs buffer prior to an AlGaAs barrier layer on submicron gratings plays an important role in overcoming mass transport effects and improving the uniformity of gratings. Transmission electron microscopy (TEM) image shows that high-density V-groove InGaAs quantum wires (QWRs) are well confined at the bottom of gratings. The photoluminescence (PL) peak of the InGaAs QWRs is observed in the temperature range from 10 to 280 K with a relatively narrow full width at half maximum less than 40 meV at room temperature PL. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystal.

  • PDF