• 제목/요약/키워드: complex Grassmannians

검색결과 19건 처리시간 0.021초

REAL HYPERSURFACES OF TYPE B IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE REEB VECTOR

  • Lee, Hyun-Jin;Suh, Young-Jin
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.551-561
    • /
    • 2010
  • In this paper we give a new characterization of real hypersurfaces of type B, that is, a tube over a totally geodesic $\mathbb{Q}P^n$ in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, where m = 2n, with the Reeb vector $\xi$ belonging to the distribution $\mathfrak{D}$, where $\mathfrak{D}$ denotes a subdistribution in the tangent space $T_xM$ such that $T_xM$ = $\mathfrak{D}{\bigoplus}\mathfrak{D}^{\bot}$ for any point $x{\in}M$ and $\mathfrak{D}^{\bot}=Span{\xi_1,\;\xi_2,\;\xi_3}$.

Real Hypersurfaces in Complex Two-plane Grassmannians with F-parallel Normal Jacobi Operator

  • Jeong, Im-Soon;Suh, Young-Jin
    • Kyungpook Mathematical Journal
    • /
    • 제51권4호
    • /
    • pp.395-410
    • /
    • 2011
  • In this paper we give a non-existence theorem for Hopf hypersurfaces M in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator $\bar{R}_N$ is parallel on the distribution F defined by $F=[{\xi}]{\cup}D^{\bot}$, where [${\xi}$] = Span{${\xi}$}, $D^{\bot}$ = Span {${\xi}_1$, ${\xi}_2$, ${\xi}_3$} and $T_xM=D{\oplus}D^{\bot}$, $x{\in}M$.

HOPF HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH LIE PARALLEL NORMAL JACOBI OPERATOR

  • Jeong, Im-Soon;Lee, Hyun-Jin;Suh, Young-Jin
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.427-444
    • /
    • 2011
  • In this paper we give some non-existence theorems for Hopf hypersurfaces in the complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ with Lie parallel normal Jacobi operator $\bar{R}_N$ and totally geodesic D and $D^{\bot}$ components of the Reeb flow.

REAL HYPERSUREAACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH PARALLEL SHAPE OPERATOR II

  • Suh, Young-Jin
    • 대한수학회지
    • /
    • 제41권3호
    • /
    • pp.535-565
    • /
    • 2004
  • In this paper we consider the notion of ξ-invariant or (equation omitted)-invariant real hypersurfaces in a complex two-plane Grassmannian $G_2$( $C^{m+2}$) and prove that there do not exist such kinds of real hypersurfaces in $G_2$( $C^{m+2}$) with parallel second fundamental tensor on a distribution ζ defined by ζ = ξ U(equation omitted), where(equation omitted) = Span {ξ$_1$, ξ$_2$, ξ$_3$}.X>}.

DEFORMATION RIGIDITY OF ODD LAGRANGIAN GRASSMANNIANS

  • Park, Kyeong-Dong
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.489-501
    • /
    • 2016
  • In this paper, we study the rigidity under $K{\ddot{a}}hler$ deformation of the complex structure of odd Lagrangian Grassmannians, i.e., the Lagrangian case $Gr_{\omega}$(n, 2n+1) of odd symplectic Grassmannians. To obtain the global deformation rigidity of the odd Lagrangian Grassmannian, we use results about the automorphism group of this manifold, the Lie algebra of infinitesimal automorphisms of the affine cone of the variety of minimal rational tangents and its prolongations.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

REAL HYPERSURFACES OF TYPE A IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE NORMAL JACOBI OPERATOR

  • Jeong, Im-Soon;Suh, Young-Jin;Tripathi, Mukut Mani
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.423-434
    • /
    • 2012
  • In this paper we give a characterization of real hypersurfaces of type (A) in a complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ which is a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, in terms of two commuting conditions related to the normal Jacobi operator and the shape operator.