• 제목/요약/키워드: comparison of value recognition

검색결과 76건 처리시간 0.026초

Object Recognition Algorithm with Partial Information

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.229-235
    • /
    • 2019
  • Due to the development of video and optical technology today, video equipments are being used in a variety of fields such as identification, security maintenance, and factory automation systems that generate products. In this paper, we investigate an algorithm that effectively recognizes an experimental object in an input image with a partial problem due to the mechanical problem of the input imaging device. The object recognition algorithm proposed in this paper moves and rotates the vertices constituting the outline of the experimental object to the positions of the respective vertices constituting the outline of the DB model. Then, the discordance values between the moved and rotated experimental object and the corresponding DB model are calculated, and the minimum discordance value is selected. This minimum value is the final discordance value between the experimental object and the corresponding DB model, and the DB model with the minimum discordance value is selected as the recognition result for the experimental object. The proposed object recognition method obtains satisfactory recognition results using only partial information of the experimental object.

감정 인식을 위한 음성의 특징 파라메터 비교 (The Comparison of Speech Feature Parameters for Emotion Recognition)

  • 김원구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.470-473
    • /
    • 2004
  • In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.

  • PDF

다중 관측열을 토대로한 HMM에 의한 음성 인식에 관한 연구 (A study on the speech recognition by HMM based on multi-observation sequence)

  • 정의봉
    • 전자공학회논문지S
    • /
    • 제34S권4호
    • /
    • pp.57-65
    • /
    • 1997
  • The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.

  • PDF

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur, Jung-Youn;Truong, Le Xuan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.553-559
    • /
    • 2004
  • In todays security industry, personal identification is also based on biometric. Biometric identification is performed basing on the measurement and comparison of physiological and behavioral characteristics, Biometric for recognition includes voice dynamics, signature dynamics, hand geometry, fingerprint, iris, etc. Iris can serve as a kind of living passport or living password. Iris recognition system is the one of the most reliable biometrics recognition system. This is applied to client/server system such as the electronic commerce and electronic banking from stand-alone system or networks, ATMs, etc. A new algorithm using nonlinear function in recognition process is proposed in this paper. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transform into polar coordinates. After performing three times Wavelet transformation, normalization was done using sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compare pairs of two adjacent pixels. The binary code of the iris is transmitted to the by server. the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the University database. Process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.

  • PDF

음성 신호를 사용한 감정인식의 특징 파라메터 비교 (Comparison of feature parameters for emotion recognition using speech signal)

  • 김원구
    • 대한전자공학회논문지SP
    • /
    • 제40권5호
    • /
    • pp.371-377
    • /
    • 2003
  • 본 논문에서 음성신호를 사용하여 인간의 감정를 인식하기 위한 특징 파라메터 비교에 관하여 연구하였다. 이를 위하여 여러 가지 감정 상태에 따라 분류된 한국어 음성 데이터 베이스를 이용하여 얻어진 음성 신호의 피치와 에너지의 평균, 표준편차와 최대 값 등 통계적인 정보 나타내는 파라메터와 음소의 특성을 나타내는 MFCC 파라메터가 사용되었다. 파라메터들의 성능을 평가하기 위하여 문장 및 화자 독립 감정 인식 시스템을 구현하여 인식 실험을 수행하였다. 성능 평가를 위한 실험에서는 운율적 특징으로 피치와 에너지와 각각의 미분 값을 사용하였고, 음소의 특성을 나타내는 특징으로 MFCC와 그 미분 값을 사용하였다. 벡터 양자화 방법을 사용한 화자 및 문장 독립 인식 시스템을 사용한 실험 결과에서 MFCC와 델타 MFCC를 사용한 경우가 피치와 에너지를 사용한 방법보다 우수한 성능을 나타내었다.

지리산국립공원 내 사유림이용에 있어서 이해당사간의 갈등과 산림이용에 대한 인식의 차이에 관한 연구 (A Study on the Recognition Differences about Using the Private Forests and Conflicts among the Stakeholders related with Mt. Jiri National Park)

  • 김의경;김동현;김현근;김성주
    • 한국산림과학회지
    • /
    • 제96권4호
    • /
    • pp.494-501
    • /
    • 2007
  • 지리산국립공원 내 사유림이용에 있어서 이해당사자 간 갈등이 발생되고 있다. 따라서 본 연구의 목적은 지리산국립공원의 가치와 갈등에 대해 이해주체 간 인식차이를 규명하고 갈등해결을 위한 합의점을 도출할 수 있는 가능성을 찾는데 있다. 이를 위해, 국립공원의 가치와 갈등인자에 대해 요인분석을 실시하여 각각 4가지 요인으로 축약하였다. 그리고 이해주체 간 인식 차이는 t-검정과 Duncan다중검정으로 구분 비교하였다. 그 결과, 국립공원의 가치에 대한 인식은 마을주민과 산림청 지자체는 인식을 같이 하고 있었으나, 국립공원은 대립적으로 인식하고 있었다. 그리고 갈등에 대한 인식은 국립공원과 산림청 지자체가 인식을 함께하고 있었으나, 마을주민은 대립적으로 인식하고 있었다. 갈등해결을 위한 방향으로 협의체 구성과 이유에 있어서 이해주체 모두 인식을 함께 하였고, 산림이용을 위한 명확한 행위기준이 필요하며, 규제정책의 집행에 있어서 규제수단은 용도지구에 따라 차등적으로 적용할 필요가 있다고 사료된다.

DNA 코딩방법과 GA 코딩방법의 패턴인식 성능 비교에 관한 연구 (Performance Comparison on Pattern Recognition Between DNA Coding Method and GA Coding Method)

  • 백동화;한승수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.383-386
    • /
    • 2002
  • In this paper, we investigated the pattern recognition performance of the numeric patterns (from 0 to 9) using DNA coding method. The pattern recognition performance of the DNA coding method is compared to the that of the GA(Genetic Algorithm). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string using binary coding, while DNA coding method uses four-type bases denoted by A(Adenine), C(Cytosine), G(Guanine) and T(Thymine), The pattern recognition performance of GA and DNA coding method is evaluated by using the same genetic operators(crossover and mutation) and the crossover probability and mutation probability are set the same value to the both methods. The DNA coding method has better characteristics over genetic algorithms (GA). The reasons for this outstanding performance is multiple possible solution presentation in one string and variable solution string length.

전통문화에 대한 가치인식이 한복에 대한 선호도와 장기적 관계에 미치는 영향 -한복체험 정도에 따른 집단비교- (The Effect of Value Recognition toward Traditional Culture on Preference and Long-term Relationship about Hanbok -Group Comparison according to Degree of Experience of Hanbok-)

  • 전지현;황복희;이영선
    • 한국의류학회지
    • /
    • 제41권4호
    • /
    • pp.698-708
    • /
    • 2017
  • How consumers perceives Korean heritage is the most essential motivation to purchase traditional products. This study investigates if there is a difference in the value perception of traditional culture on preferences for and the long-term relationship of Hanboks. It also investigates differences in the preference and consumption behavior of Hanboks depending on the degree of experience for Hanbok. For this research purpose, data were collected from 745 residents between the ages of 20-60 in the Seoul and metropolitan areas through online and offline surveys. The data were analyzed by descriptive statistics, factor analysis, and path analysis, using the SPSS-WIN 20.0, AMOS 20.0 program. The value recognition toward traditional culture derived aesthetic and symbolic factors. The result of grouping according to the experience of the Hanbok indicated that the two groups of traditional cultural values influenced preferences for Hanboks. In the middle group, only the symbolic value had a significant influence on the preference of Hanbok. It was found that the less experienced group had no traditional culture value factor which had a significant effect on the preferences for Hanboks. Based on the results of this study, it is expected to be used as basic data to establish a marketing strategy to increase the preferences for traditional culture such as Hanboks by increasing various traditional culture experiences as well as Hanboks.

A Robust Method for Partially Occluded Face Recognition

  • Xu, Wenkai;Lee, Suk-Hwan;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2667-2682
    • /
    • 2015
  • Due to the wide application of face recognition (FR) in information security, surveillance, access control and others, it has received significantly increased attention from both the academic and industrial communities during the past several decades. However, partial face occlusion is one of the most challenging problems in face recognition issue. In this paper, a novel method based on linear regression-based classification (LRC) algorithm is proposed to address this problem. After all images are downsampled and divided into several blocks, we exploit the evaluator of each block to determine the clear blocks of the test face image by using linear regression technique. Then, the remained uncontaminated blocks are utilized to partial occluded face recognition issue. Furthermore, an improved Distance-based Evidence Fusion approach is proposed to decide in favor of the class with average value of corresponding minimum distance. Since this occlusion removing process uses a simple linear regression approach, the completely computational cost approximately equals to LRC and much lower than sparse representation-based classification (SRC) and extended-SRC (eSRC). Based on the experimental results on both AR face database and extended Yale B face database, it demonstrates the effectiveness of the proposed method on issue of partial occluded face recognition and the performance is satisfactory. Through the comparison with the conventional methods (eigenface+NN, fisherfaces+NN) and the state-of-the-art methods (LRC, SRC and eSRC), the proposed method shows better performance and robustness.

Emotion recognition from speech using Gammatone auditory filterbank

  • 레바부이;이영구;이승룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.