• Title/Summary/Keyword: comparative genomic

Search Result 240, Processing Time 0.027 seconds

Comparative Analysis of Large Genome in Human-Chimpanzee (인간-침팬지간 대량의 지놈서열 비교분석)

  • Kim, Tae-Hyung;Kim, Dae-Soo;Jeon, Yeo-Jin;Cho, Hwan-Gue;Kim, Heui-Soo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.183-192
    • /
    • 2003
  • With the availability of complete whole-genomes such as the human, mouse, fugu and chimpanzee chromosome 22, comparative analysis of large genomes from cross-species at varying evolutionary distances is considered one of a powerful approach for identifying coding and functional non-coding sequences. Here we describe a fast and efficient global alignment method especially for large genomic regions over mega bases pair. We used an approach for identifying all similarity regions by HSP (Highest Segment Pair) regions using local alignments and then large syntenic genome based on the both extension of anchors at HSP regions in two species and global conservation map. Using this alignment approach, we examined rearrangement loci in human chromosome 21 and chimpanzee chromosome 22. Finally, we extracted syntenic genome 30 Mb of human chromosome 21 with chimpanzee chromosome 22, and then identified genomic rearrangements (deletions and insertions ranging h size from 0.3 to 200 kb). Our experiment shows that all jnsertion/deletion (indel) events in excess of 300 bp within chimpanzee chromosome 22 and human chromosome 21 alignments in order to identify new insertions that had occurred over the last 7 million years of evolution. Finally we also discussed evolutionary features throughout comparative analyses of Ka/ks (non-synonymous / synonymous substitutions) rate in orthologous 119 genes of chromosome 21 and 53 genes of MHC-I class in human and chimpanzee genome.

  • PDF

Genomic Approaches for Understanding the Characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium ST1120, Isolated from Swine Feces in Korea

  • Kim, Seongok;Kim, Eunsuk;Park, Soyeon;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1983-1993
    • /
    • 2017
  • Salmonella enterica subsp. enterica serovar Typhimurium, one of the most common foodborne pathogens, is transmitted mainly through contaminated food derived from infected animals. In this study, S. Typhimurium ST1120, an isolate from pig feces in Korea, was subjected to whole-genome analysis to understand its genomic features associated with virulence. The genome of ST1120 was found to have a circular chromosome of 4,855,001 bp (GC content 52.2%) and a plasmid of 6,863 bp (GC content 46.0%). This chromosome was predicted to have 4,558 open reading frames (ORFs), 17 pseudogenes, 22 rRNA genes, and 86 tRNA genes. Its plasmid was predicted to have three ORFs. Comparative genome analysis revealed that ST1120 was phylogenetically close to S. Typhimurium U288, a critical isolate in piggery farms and food chains in Europe. In silico functional analysis predicted that the ST1120 genome harbored multiple genes associated with virulence and stress resistance, including Salmonella pathogenicity islands (SPIs containing SPI-1 to SPI-5, SPI-13, and SPI-14), C63PI locus, ST104 prophage locus, and various antibiotic resistance genes. In accordance with these analysis results, ST1120 showed competence in invasion and survival abilities when it was added to host cells. It also exhibited robust resistance against antibiotics in comparison with other S. Typhimurium strains. This is the first report of the complete genome sequence of S. Typhimurium isolated from swine in Korea. Comparative genome analysis between ST1120 and other Salmonella strains would provide fruitful information toward understanding Salmonella host specificity and developing control measures against S. Typhimurium infection.

Comparative Genomics Study of Interferon-$\alpha$ Receptor-1 in Humans and Chimpanzees

  • Kim, Il-Chul;Chi, Seung-Wook;Kim, Dae-Won;Choi, Sang-Haeng;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.142-148
    • /
    • 2005
  • The immune response-related genes have been suggested to be the most favorable genes for positive selection during evolution. Comparing the entire DNA sequence of chimpanzee chromosome 22 (PTR22) with human chromosome 21 (HSA21), we have identified 15 orthologs having indel in their coding sequences. Among them, interferon-${\alpha}$ receptor-1 gene (IFNAR1), an immuneresponse-related gene, is subjected to comparative genomic analysis. Chimpanzee IFNAR1 showed the same genomic structure as human IFNAR1 (11 exons and 10 introns) except the 3 bp insertion in exon 4. The sequence alignment of IFNAR1 coding sequence indicated that 'ISPP' amino acid sequence motif is highly conserved in chimpanzee and other animals including mouse and chicken. However, the human IFNAR1 shows that one proline residue is missing in the sequence motif. The homology modeling of the IFNAR1 structures suggests that the proline deletion in human IFNAR1 leads to the formation of the following ${\alpha}$-helix, whereas two sequential prolines in chimpanzee IFNAR1 inhibit it. As a result, human IFNAR1 may adopt a characteristic structure distinct from chimpanzee IFNAR1. This human specific trait could contribute to specific immune response in the most optimized manner for humans. Further molecular biological studies on the IFNAR1 will help us to gain insights into the molecular implication of species-specific host-pathogen interaction in primate evolution.

Comparative Genome Analysis of Rathayibacter tritici NCPPB 1953 with Rathayibacter toxicus Strains Can Facilitate Studies on Mechanisms of Nematode Association and Host Infection

  • Park, Jungwook;Lee, Pyeong An;Lee, Hyun-Hee;Choi, Kihyuck;Lee, Seon-Woo;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.370-381
    • /
    • 2017
  • Rathayibacter tritici, which is a Gram positive, plant pathogenic, non-motile, and rod-shaped bacterium, causes spike blight in wheat and barley. For successful pathogenesis, R. tritici is associated with Anguina tritici, a nematode, which produces seed galls (ear cockles) in certain plant varieties and facilitates spread of infection. Despite significant efforts, little research is available on the mechanism of disease or bacteria-nematode association of this bacterium due to lack of genomic information. Here, we report the first complete genome sequence of R. tritici NCPPB 1953 with diverse features of this strain. The whole genome consists of one circular chromosome of 3,354,681 bp with a GC content of 69.48%. A total of 2,979 genes were predicted, comprising 2,866 protein coding genes and 49 RNA genes. The comparative genomic analyses between R. tritici NCPPB 1953 and R. toxicus strains identified 1,052 specific genes in R. tritici NCPPB 1953. Using the BlastKOALA database, we revealed that the flexible genome of R. tritici NCPPB 1953 is highly enriched in 'Environmental Information Processing' system and metabolic processes for diverse substrates. Furthermore, many specific genes of R. tritici NCPPB 1953 are distributed in substrate-binding proteins for extracellular signals including saccharides, lipids, phosphates, amino acids and metallic cations. These data provides clues on rapid and stable colonization of R. tritici for disease mechanism and nematode association.

Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis

  • Lee, Jungmin;Heo, Sojeong;Choi, Jihoon;Kim, Minsoo;Pyo, Eunji;Lee, Myounghee;Shin, Sangick;Lee, Jaehwan;Sim, Jaehun;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.298-303
    • /
    • 2021
  • Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/μl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/μl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.

Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics

  • Son, Seungwoo;Lee, Raham;Park, Seung-Moon;Lee, Sung Ho;Lee, Hak-Kyo;Kim, Yangseon;Shin, Donghyun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1411-1422
    • /
    • 2021
  • Lactobacillus acidophilus is a gram-positive, microaerophilic, and acidophilic bacterial species. L. acidophilus strains in the gastrointestinal tracts of humans and other animals have been profiled, but strains found in the canine gut have not been studied yet. Our study helps in understanding the genetic features of the L. acidophilus C5 strain found in the canine gut, determining its adaptive features evolved to survive in the canine gut environment, and in elucidating its probiotic functions. To examine the canine L. acidophilus C5 genome, we isolated the C5 strain from a Korean dog and sequenced it using PacBio SMRT sequencing technology. A comparative genomic approach was used to assess genetic relationships between C5 and six other strains and study the distinguishing features related to different hosts. We found that most genes in the C5 strain were related to carbohydrate transport and metabolism. The pan-genome of seven L. acidophilus strains contained 2,254 gene families, and the core genome contained 1,726 gene families. The phylogenetic tree of the core genes in the canine L. acidophilus C5 strain was very close to that of two strains (DSM20079 and NCFM) from humans. We identified 30 evolutionarily accelerated genes in the L. acidophilus C5 strain in the ratio of non-synonymous to synonymous substitutions (dN/dS) analysis. Five of these thirty genes were associated with carbohydrate transport and metabolism. This study provides insights into genetic features and adaptations of the L. acidophilus C5 strain to survive the canine intestinal environment. It also suggests that the evolution of the L. acidophilus genome is closely related to the host's evolutionary adaptation process.

Phylogenomics and its Growing Impact on Algal Phylogeny and Evolution

  • Adrian , Reyes-Prieto;Yoon, Hwan-Su;Bhattacharya, Debashish
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Genomic data is accumulating in public database at an unprecedented rate. Although presently dominated by the sequences of metazoan, plant, parasitic, and picoeukaryotic taxa, both expressed sequence tag (EST) and complete genomes of free-living algae are also slowly appearing. This wealth of information offers the opportunity to clarify many long-standing issues in algal and plant evolution such as the contribution of the plastid endosymbiont to nuclear genome evolution using the tools of comparative genomics and multi-gene phylogenetics. A particularly powerful approach for the automated analysis of genome data from multiple taxa is termed phylogenomics. Phylogenomics is the convergence of genomics science (the study of the function and structure of genes and genomes) and molecular phylogenetics (the study of the hierarchical evolutionary relationships among organisms, their genes and genomes). The use of phylogenetics to drive comparative genome analyses has facilitated the reconstruction of the evolutionary history of genes, gene families, and organisms. Here we survey the available genome data, introduce phylogenomic pipelines, and review some initial results of phylogenomic analyses of algal genome data.

Chromosome 22 LD Map Comparison between Korean and Other Populations

  • Lee, Jong-Eun;Jang, Hye-Yoon;Kim, Sook;Yoo, Yeon-Kyeong;Hwang, Jung-Joo;Jun, Hyo-Jung;Lee, Kyu-Sang;Son, Ok-Kyung;Yang, Jun-Mo;Ahn, Kwang-Sung;Kim, Eug-Ene;Lee, Hye-Won;Song, Kyu-Young;Kim, Hie-Lim;Lee, Seong-Gene;Yoon, Yong-Sook;Kimm, Ku-Chan;Han, Bok-Ghee;Oh, Berm-Seok;Kim, Chang-Bae;Jin, Hoon;Choi, Kyoung-O.;Kang, Hyo-Jin;Kim, Young-J.
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most abundant forms of human genetic variations and resources for mapping complex genetic traits and disease association studies. We have constructed a linkage disequilibrium (LD) map of chromosome 22 in Korean samples and compared it with those of other populations, including Yorubans in Ibadan, Nigeria (YRI), Centre d'Etude du Polymorphisme Humain (CEPH) reference families (CEU), Japanese in Tokyo (JPT) and Han Chinese in Beijing (CHB) in the HapMap database. We genotyped 4681 of 111,448 publicly available SNPs in 90 unrelated Koreans. Among genotyped SNPs, 4167 were polymorphic. Three hundred and five LD blocks were constructed to make up 18.6% (6.4 of 34.5 Mb) of chromosome 22 with 757 tagSNPs and 815 haplotypes (frequency $\geq$ 5.0%). Of 3430 common SNPs genotyped in all five populations, 514 were monomorphic in Koreans. The CHB + JPT samples have more than a 72% overlap with the monomorphic SNPs in Koreans, while the CEU + YRI samples have less than a 38% overlap. The patterns of hot spots and LD blocks were dispersed throughout chromosome 22, with some common blocks among populations, highly concordant between the three Asian samples. Analysis of the distribution of chimpanzee-derived allele frequency (DAF), a measure of genetic differentiation, Fst levels, and allele frequency difference (AFD) among Koreans and the HapMap samples showed a strong correlation between the Asians, while the CEU and YRI samples showed a very weak correlation with Korean samples. Relative distance as a quantitative measurement based upon DAF, Fst, and AFD indicated that all three Asian samples are very proximate, while CEU and YRI are significantly remote from the Asian samples. Comparative genome-wide LD studies provide useful information on the association studies of complex diseases.

Genomic and Transgenic Approaches to Modified Plants: Disease Resistance in the Brassica as a Model System.

  • Ekuere, Usukuma;Good, Allen G.;Mayerhofer, Reinhold
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.317-323
    • /
    • 2000
  • Molecular genetic techniques can now be applied to the development of advanced plant genotypes, either through genetic transformation or genomic approaches which allow researchers to transfer specific traits using molecular markers. In this paper, we discuss the use of these techniques towards understanding the genetics of blackleg resistance in Brassica. In a comparative mapping study between Arabidopsis thaliana and Brassica napus, 6 R-ESTs, 7 B. napus RFLP markers and a B. napus EST were located in a collinear region of N7 (B. napus) and chromosome 1 (A. thaliana). One of the A. thaliana R-ESTs and 4 of the B. napus RFLPs co-segregated and mapped to the LmRl locus for blackleg resistance. Introgression of blackleg resistance from wild relatives is also investigated with the possibility of accelerating the introgression process via marker assisted selection.

  • PDF

Coffin-Lowry Syndrome - The First Genetically Confirmed Case in Korea Diagnosed by Whole Exome Sequencing

  • Yoon, Ju Young;Cheon, Chong Kun
    • Journal of Interdisciplinary Genomics
    • /
    • v.2 no.1
    • /
    • pp.10-12
    • /
    • 2020
  • Coffin-Lowry syndrome (CLS) is a genetic disorder characterized by intellectual disability, typical facial features, and skeletal abnormalities. But this syndrome shows highly variable clinical manifestations, and can't be diagnosed with conventional chromosome analysis or comparative genomic hybridization, leading to delayed diagnosis. Here we report an 18-year-old boy with CLS diagnosed by whole exome sequencing. Our patient initially presented with developmental delay, facial dysmorphism at the age of 1. At the age of 18, he developed orthopnea due to mitral regurgitation. At the 22 years of age, he was diagnosed as CLS diagnosed by whole exome sequencing. Our case implies that clinical suspicion is important for early diagnosis, and advanced diagnostic tools such as WES should be considered in suspected cases.