DOI QR코드

DOI QR Code

Phylogenomics and its Growing Impact on Algal Phylogeny and Evolution

  • Adrian , Reyes-Prieto (University of Iowa, Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics) ;
  • Yoon, Hwan-Su (University of Iowa, Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics) ;
  • Bhattacharya, Debashish (University of Iowa, Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics)
  • Published : 2006.03.31

Abstract

Genomic data is accumulating in public database at an unprecedented rate. Although presently dominated by the sequences of metazoan, plant, parasitic, and picoeukaryotic taxa, both expressed sequence tag (EST) and complete genomes of free-living algae are also slowly appearing. This wealth of information offers the opportunity to clarify many long-standing issues in algal and plant evolution such as the contribution of the plastid endosymbiont to nuclear genome evolution using the tools of comparative genomics and multi-gene phylogenetics. A particularly powerful approach for the automated analysis of genome data from multiple taxa is termed phylogenomics. Phylogenomics is the convergence of genomics science (the study of the function and structure of genes and genomes) and molecular phylogenetics (the study of the hierarchical evolutionary relationships among organisms, their genes and genomes). The use of phylogenetics to drive comparative genome analyses has facilitated the reconstruction of the evolutionary history of genes, gene families, and organisms. Here we survey the available genome data, introduce phylogenomic pipelines, and review some initial results of phylogenomic analyses of algal genome data.

Keywords

References

  1. Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., George R.A., Lewis S.E., Richards S., Ashburner M., Henderson S.N., Sutton G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., Brandon R.C., Rogers Y.H., Blazej R.G., Champe M., Pfeiffer B.D., Wan K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Gabor G.L., Abril J.F., Agbayani A., An H.J., Andrews-Pfannkoch C., Baldwin D., Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley E.M., Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov S., Borkova D., Botchan M.R., Bouck J., Brokstein P., Brottier P., Burtis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., de Pablos B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz S.M., Dodson K., Doup L.E., Downes M., Dugan-Rocha S., Dunkov B.C., Dunn P., Durbin K.J., Evangelista C.C., Ferraz C., Ferriera S., Fleischmann W., Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser K., Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris M., Harris N.L., Harvey D., Heiman T.J., Hernandez J.R., Houck J., Hostin D., Houston K.A., Howland T.J., Wei M.H., Ibegwam C., Jalali M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Ketchum K.A., Kimmel B.E., Kodira C.D., Kraft C., Kravitz S., Kulp D., Lai Z., Lasko P., Lei Y., Levitsky A.A., Li J., Li Z., Liang Y., Lin X., Liu X., Mattei B., McIntosh T.C., McLeod M.P., McPherson D., Merkulov G., Milshina N.V., Mobarry C., Morris J., Moshrefi A., Mount S.M., Moy M., Murphy B., MurphyL., Muzny D.M., Nelson D.L., Nelson D.R., Nelson K.A., Nixon K., Nusskern D.R., Pacleb J.M., Palazzolo M., Pittman G.S., Pan S., Pollard J., Puri V., Reese M.G., Reinert K., Remington K., Saunders R.D., Scheeler F., Shen H., Shue B.C., Siden-Kiamos I., Simpson M., Skupski M.P., Smith T., Spier E., Spradling A.C., Stapleton M., Strong R., Sun E., Svirskas R., Tector C., Turner R., Venter E., Wang A.H., Wang X., Wang Z.Y., Wassarman D.A., Weinstock G.M., Weissenbach J., Williams S.M., WoodageT., Worley K.C., Wu D., Yang S., Yao Q.A., Ye J., Yeh R.F., Zaveri J.S., Zhan M., Zhang G., Zhao Q., Zheng L., Zheng X.H., Zhong F.N., Zhong W., Zhou X., Zhu S., Zhu X. and Smith H.O. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185-2195 https://doi.org/10.1126/science.287.5461.2185
  2. Adl S.M., Simpson A.G., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane C.E., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., McCourt R.M., Mendoza L., Moestrup O., Mozley-Standridge S.E., Nerad T.A., Shearer C.A., Smirnov A.V., Spiegel F.W. and Taylor M.F. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52: 399-451 https://doi.org/10.1111/j.1550-7408.2005.00053.x
  3. Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403- 410 https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 https://doi.org/10.1038/35048692
  5. Armbrust E.V., Berges J.A., Bowler C., Green B.R., Martinez D., Putnam N.H., Zhou S., Allen A.E., Apt K.E., Bechner M., Brzezinski M.A., Chaal B.K., Chiovitti A., Davis A.K., Demares M.S., Detter J.C., Glavina T., Goodstein D., Hadi M.Z., Hellsten U., Hildebrand M., Jenkins B.D., Jurka J., Kapitonov V.V., Kroger N., Lau W.W., Lane T.W., Larimer F.W., Lippmeier J.C., Lucas S., Medina M., Montsant A., Obornik M., Parker M.S., Palenik B., Pazour G.J., Richardson P.M., Rynearson T.A., Saito M.A., Schwartz D.C., Thamatrakoln K., Valentin K., Vardi A., Wilkerson F.P. and Rokhsar D.S. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79-86 https://doi.org/10.1126/science.1101156
  6. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. and Wheeler D.L. 2006. GenBank. Nucleic Acids Res. 34: D16-D20
  7. Bhattacharya D., Yoon H.S. and Hackett J.D. 2004. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 6: 50-60
  8. Blattner F.R., Plunkett G. 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B. and Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1474 https://doi.org/10.1126/science.277.5331.1453
  9. C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012-2018 https://doi.org/10.1126/science.282.5396.2012
  10. Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46: 347-366 https://doi.org/10.1111/j.1550-7408.1999.tb04614.x
  11. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G. and Thompson J.D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500 https://doi.org/10.1093/nar/gkg500
  12. Chesnick J.M., Morden C.W. and Schmieg A.M. 1996. Identity of the endosymbiont of Peridinium foliaceum (Pyrrophyta): analysis of the rbcLS operon. 32: 850-857 https://doi.org/10.1111/j.0022-3646.1996.00850.x
  13. Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797 https://doi.org/10.1093/nar/gkh340
  14. Eisen J. A. 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis Genome Res. 8: 163-167 https://doi.org/10.1101/gr.8.3.163
  15. Fast N.M., Kissinger J.C., Roos D.S. and Keeling P.J. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418-426 https://doi.org/10.1093/oxfordjournals.molbev.a003818
  16. Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512 https://doi.org/10.1126/science.7542800
  17. Frickey T. and Lupas A.N. 2004. PhyloGenie: automated phylome generation and analysis. Nucleic Acids Res. 32: 5231-5238 https://doi.org/10.1093/nar/gkh867
  18. Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H. and Oliver S.G. 1996. Life with 6000 genes. Science 274: 546, 563-567
  19. Hackett J.D., Yoon H.S., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Nosenko T. and Bhattacharya D. 2004. Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr. Biol. 14: 213-218 https://doi.org/10.1016/j.cub.2004.01.032
  20. Hackett J.D., Maranda L., Yoon H.S. and Bhattacharya D. 2003. Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol. 39: 440-448 https://doi.org/10.1046/j.1529-8817.2003.02100.x
  21. Harper J.T., Waanders E., and Keeling P.J. 2005. On the monophyly of chromalveolates using a six protein phylogeny of eukaryotes. Int. J. Syst. Evol. Microbiol. 55: 487-496 https://doi.org/10.1099/ijs.0.63216-0
  22. Huang J., Mullapudi N., Lancto C.A., Scott M., Abrahamsen M.S. and Kissinger J.C. 2004. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol. 5: R88 https://doi.org/10.1186/gb-2004-5-11-r88
  23. Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J.P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann N., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J.C., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R.H., Wilson R.K., Hillier L.W., McPherson J.D., Marra M.A., Mardis E.R., Fulton L.A., Chinwalla A.T., Pepin K.H., Gish W.R., Chissoe S.L., Wendl M.C., Delehaunty K.D., Miner T.L., Delehaunty A., Kramer J.B., Cook L.L., Fulton R.S., Johnson D.L., Minx P.J., Clifton S.W., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J.F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs R.A., Muzny D.M., Scherer S.E., Bouck J.B., Sodergren E.J., Worley K.C., Rives C.M., Gorrell J.H., Metzker M.L., Naylor S.L., Kucherlapati R.S., Nelson D.L., Weinstock G.M., Sakaki Y., Fujiyama A., Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., Robert C., Wincker P., Smith D.R., Doucette-Stamm L., Rubenfield M., Weinstock K., Lee H.M., Dubois J., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A., Yang H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis R.W., Federspiel N.A., Abola A.P., Proctor M.J., Myers R.M., Schmutz J., Dickson M., Grimwood J., Cox D.R., Olson M.V., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans G.A., Athanasiou M., Schultz R., Roe B.A., Chen F., Pan H., Ramser J., Lehrach H., Reinhardt R., McCombie W.R., de la Bastide M., Dedhia N., Blocker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey J.A., Bateman A., Batzoglou S., Birney E., Bork P., Brown D.G., Burge C.B., Cerutti L., Chen H.C., Church D., Clamp M., Copley R.R., Doerks T., Eddy S.R., Eichler E.E., Furey T.S., Galagan J., Gilbert J.G., Harmon C., Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson L.S., Jones T.A., Kasif S., Kaspryzk A., Kennedy S., Kent W.J., Kitts P., Koonin E.V., Korf I., Kulp D., Lancet D., Lowe T.M., McLysaght A., Mikkelsen T., Moran J.V., Mulder N., Pollara V.J., Ponting C.P., Schuler G., Schultz J., Slater G., Smit A.F., Stupka E., Szustakowski J., Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf Y.I., Wolfe K.H., Yang S.P., Yeh R.F., Collins F., Guyer M.S., Peterson J., Felsenfeld A., Wetterstrand K.A., Patrinos A., Morgan M.J., de Jong P., Catanese J.J., Osoegawa K., Shizuya H., Choi S., Chen Y.J. and International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921 https://doi.org/10.1038/35057062
  24. Li S., Nosenko T., Hackett J.D. and Bhattacharya D. 2006. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol. Biol. Evol. 23: 663-674 https://doi.org/10.1093/molbev/msj075
  25. Lidie K.B., Ryan J.C., Barbier M. and Van Dolah F.M. 2005. Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of DNA microarray. Mar. Biotechnol. 7: 481-493 https://doi.org/10.1007/s10126-004-4110-6
  26. Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M. and Penny D. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA 99: 12246-12251
  27. Matsuzaki M., Misumi O., Shin-I T., Maruyama S., Takahara M., Miyagishima S.Y., Mori T., Nishida K., Yagisawa F., Nishida K., Yoshida Y., Nishimura Y., Nakao S., Kobayashi T., Momoyama Y., Higashiyama T., Minoda A., Sano M., Nomoto H., Oishi K., Hayashi H., Ohta F., Nishizaka S., Haga S., Miura S., Morishita T., Kabeya Y., Terasawa K., Suzuki Y., Ishii Y., Asakawa S., Takano H., Ohta N., Kuroiwa H., Tanaka K., Shimizu N., Sugano S., Sato N., Nozaki H., Ogasawara N., Kohara Y. and Kuroiwa T. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653-657 https://doi.org/10.1038/nature02398
  28. Misumi O., Matsuzaki M., Nozaki H., Miyagishima S.Y., Mori T., Nishida K., Yagisawa F., Yoshida Y., Kuroiwa H. and Kuroiwa T. 2005. Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol. 137: 567-585 https://doi.org/10.1104/pp.104.053991
  29. Montsant A., Jabbari K., Maheswari U. and Bowler C. 2005. Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol. 137: 500-513 https://doi.org/10.1104/pp.104.052829
  30. Notredame C., Higgins D. and Heringa J. 2000.T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302: 205-217 https://doi.org/10.1006/jmbi.2000.4042
  31. Pearson W.R. and Lipman D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444-2448
  32. Rodriguez-Ezpeleta N., Brinkmann H., Burey S.C., Roure B., Burger G., Loffelhardt W., Bohnert H.J., Philippe H. and Lang B.F. 2005 Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 15: 1325-1330 https://doi.org/10.1016/j.cub.2005.06.040
  33. Schimidt H.A., Strimmer K., Vingron M. and Haeseler A.V. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502-504 https://doi.org/10.1093/bioinformatics/18.3.502
  34. Sicheritz-Ponten T. and Anderson S.G. 2001. A phylogenomic approach to microbial evolution. Nucleic Acids Res. 29: 545-552 https://doi.org/10.1093/nar/29.2.545
  35. Sjolander K. 2004. Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics 20: 170-179 https://doi.org/10.1093/bioinformatics/bth021
  36. Swofford, D. L. 2001. $PAUP^{*}$. Phylogenetic Analysis Using Parsimony ($^{*}$and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts
  37. Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R., Zhang Q., Kodira C.D., Zheng X.H., Chen L., Skupski M., Subramanian G., Thomas P.D., Zhang J., Gabor Miklos G.L., Nelson C., Broder S., Clark A.G., Nadeau J., McKusick V.A., Zinder N., Levine A.J., Roberts R.J., Simon M., Slayman C., Hunkapiller M., Bolanos R., Delcher A., Dew I., Fasulo D., Flanigan M., Florea L., Halpern A., Hannenhalli S., Kravitz S., Levy S., Mobarry C., Reinert K., Remington K., Abu-Threideh J., Beasley E., Biddick K., Bonazzi V., Brandon R., Cargill M., Chandramouliswaran I., Charlab R., Chaturvedi K., Deng Z., Di Francesco V., Dunn P., Eilbeck K., Evangelista C., Gabrielian A.E., Gan W., Ge W., Gong F., Gu Z., Guan P., Heiman T.J., Higgins M.E., Ji R.R., Ke Z., Ketchum K.A., Lai Z., Lei Y., Li Z., Li J., Liang Y., Lin X., Lu F., Merkulov G.V., Milshina N., Moore H.M., Naik A.K., Narayan V.A., Neelam B., Nusskern D., Rusch D.B., Salzberg S., Shao W., Shue B., Sun J., Wang Z., Wang A., Wang X., Wang J., Wei M., Wides R., Xiao C., Yan C., Yao A., Ye J., Zhan M., Zhang W., Zhang H., Zhao Q., Zheng L., Zhong F., Zhong W., Zhu S., Zhao S., Gilbert D., Baumhueter S., Spier G., Carter C., Cravchik A., Woodage T., Ali F., An H., Awe A., Baldwin D., Baden H., Barnstead M., Barrow I., Beeson K., Busam D., Carver A., Center A., Cheng M.L., Curry L., Danaher S., Davenport L., Desilets R., Dietz S., Dodson K., Doup L., Ferriera S., Garg N., Gluecksmann A., Hart B., Haynes J., Haynes C., Heiner C., Hladun S., Hostin D., Houck J., Howland T., Ibegwam C., Johnson J., Kalush F., Kline L., Koduru S., Love A., Mann F., May D., McCawley S., McIntosh T., McMullen I., Moy M., Moy L., Murphy B., Nelson K., Pfannkoch C., Pratts E., Puri V., Qureshi H., Reardon M., Rodriguez R., Rogers Y.H., Romblad D., Ruhfel B., Scott R., Sitter C., Smallwood M., Stewart E., Strong R., Suh E., Thomas R., Tint N.N., Tse S., Vech C., Wang G., Wetter J., Williams S., Williams M., Windsor S., Winn-Deen E., Wolfe K., Zaveri J., Zaveri K., Abril J.F., Guigo R., Campbell M.J., Sjolander K.V., Karlak B., Kejariwal A., Mi H., Lazareva B., Hatton T., Narechania A., Diemer K., Muruganujan A., Guo N., Sato S., Bafna V., Istrail S., Lippert R., Schwartz R., Walenz B., Yooseph S., Allen D., Basu A., Baxendale J., Blick L., Caminha M., Carnes-Stine J., Caulk P., Chiang Y.H., Coyne M., Dahlke C., Mays A., Dombroski M., Donnelly M., Ely D., Esparham S., Fosler C., Gire H., Glanowski S., Glasser K., Glodek A., Gorokhov M., Graham K., Gropman B., Harris M., Heil J., Henderson S., Hoover J., Jennings D., Jordan C., Jordan J., Kasha J., Kagan L., Kraft C., Levitsky A., Lewis M., Liu X., Lopez J., Ma D., Majoros W., McDaniel J., Murphy S., Newman M., Nguyen T., Nguyen N., Nodell M., Pan S., Peck J., Peterson M., Rowe W., Sanders R., Scott J., Simpson M., Smith T., Sprague A., Stockwell T., Turner R., Venter E., Wang M., Wen M., Wu D., Wu M., Xia A., Zandieh A. and Zhu X. 2001. The sequence of the human genome. Science 291: 1304-1351 https://doi.org/10.1126/science.1058040
  38. Watanabe M.M., Takeda Y., Sasa T., Inouye I., Suda S., Sawaguchi T. and Chihara M. 1987. A green dinoflagellate with chlorophylls a and b morphology fine structure of the chloroplast and chlorophyll composition. J. Phycol. 23: 382-389 https://doi.org/10.1111/j.1529-8817.1987.tb04148.x
  39. Yoon H.S., Hackett J.D., Van Dolah F.M., Nosenko T., Lidie K.L. and Bhattacharya D. 2005. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol. Biol. Evol. 22: 1299-1308 https://doi.org/10.1093/molbev/msi118
  40. Yoon H.S., Hackett J.D., Pinto G. and Bhattacharya D. 2002. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99: 15507-15512
  41. Zmasek C.M. and Eddy S.R. 2002. RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinformatics 16: 3:14

Cited by

  1. GENOMIC INSIGHTS INTO EVOLUTIONARY RELATIONSHIPS AMONG HETEROKONT LINEAGES EMPHASIZING THE PHAEOPHYCEAE vol.44, pp.1, 2008, https://doi.org/10.1111/j.1529-8817.2007.00435.x
  2. Though with constraints imposed by endosymbiosis, preferential attachment is still a plausible mechanism responsible for the evolution of the chloroplast metabolic network vol.22, pp.1, 2009, https://doi.org/10.1111/j.1420-9101.2008.01621.x
  3. Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions vol.16, pp.23, 2006, https://doi.org/10.1016/j.cub.2006.09.063
  4. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta) vol.64, pp.1, 2012, https://doi.org/10.1016/j.ympev.2012.03.014
  5. Identification and characterization of candidates involved in production of OMEGAs in microalgae: a gene mining and phylogenomic approach pp.1532-2297, 2018, https://doi.org/10.1080/10826068.2018.1476886