• Title/Summary/Keyword: companion planting

Search Result 19, Processing Time 0.021 seconds

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

Effect of Companion Planting with Aromatic Plants on the Growth and Pest Control of Lettuce(Lactuca sativa) in Rooftop Urban Agriculture (옥상 도시농업에서 방향식물과의 공영식재에 따른 상추의 생육 및 해충방제 효과)

  • Han Gil Kim;Sun Yeong Lee;Yong Han Yoon;Jin Hee Ju
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • The objective of this study were to assess rooftop urban agriculture and analyze the differences in soil, growth, physiology, and productivity to elucidate the effect of companion planting with various plants, including lettuce (Lactuca sativa), rosemary (Salvia rosmarinus), marigold (Tagetes patula), Korean perilla (Perilla frutescens), and garlic chives (Allium senescens). Measurements were taken every other week from May to August 2023, totaling eight measurement. Regarding the characteristics of the soil planted with lettuce and aromatic plants, the combined planting of lettuce and garlic chives created a favorable soil environment for plant growth. Consequently, the best growth was observed when lettuce and garlic chives were companion planted. Companion planting of lettuce and garlic chives appears to be the most efficient concerning growth and physiology. The productivity of companion planting lettuce and aromatic plants also showed high-quality lettuce when lettuces and garlic chives were companion planted. Therefore, companion planting of lettuces and garlic chives in rooftop urban agriculture is suitable for growth, physiology, and productivity.

Effects of Companion Planting with Tagetes patula on the Growth and Pest Control of Brassica campestris in Rooftop Urban Agriculture (옥상 도시농업에서 메리골드의 동반식재 비율이 배추의 생육 및 해충방제에 미치는 영향)

  • Park, Sun-Young;Min, Kyung-Min;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.825-832
    • /
    • 2022
  • This study aimed to explore companion planting to improve vegetable productivity on extensive green roofs through urban agriculture with limited substrate depth. From May to July 2021, the study conducted on the rooftop to evaluate the effects of marigold (Tagetes patula) planting ratio on the growth and pest control of cabbage (Brassica campestris). The experiment plot measured 1 m in width × 1 m in length × 0.25 m in height and 0.2 m in substrate depth. Fifteen plots were planted in varying proportions of cabbage and marigold for three repetitions per treatment: cabbage control (CC), 2:1(C2M1), 1:1(C1M1), 1:2(C1M2), and marigold control (MC). We found that companion planting marigolds with cabbage significantly increased cabbage growth and reduced pest infestation. The study revealed that C1M1, when cabbage and marigold have the same proportion, is an efficient companion planting ratio. Companion planting, in which non-crop vegetation manages pests and increases crop productivity, improves natural pest control and preserves biodiversity on rooftop urban agriculture.

The Effect of Mixed Cultivation Using Companion Plants on the Growth and Quality of Cherry Tomatoes

  • Lee, Byoung-Kwon;Yun, Hyung Kwon;Hong, In-Kyoung;Jung, Young-Bin;Lee, Sang-Mi
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.311-327
    • /
    • 2021
  • Background and objective: Recent urban agriculture meets the needs of urban residents that safety and avoids using chemical pesticides. This study was conducted to identify various factors of companion planting affecting the growth of cherry tomatoes, which will promoting urban agriculture by improving socioeconomic satisfaction with gardening activities through quality. Methods: Four types of companion plants such as marigold, zinnia, spearmint and basil, that have a companion effect with growth, sugar content, and vitamin C content. We obtained the mean and standard deviation and tested the significance at a 95% confidence level (p < .05) with Duncan's multiple range test after one way ANOVA and MANOVA. Results: Compared to monoculture of cherry tomatoes, the plant growth in the treatment plots with companion planting showed a significant increase overall(p < .05), but there wasn't interaction effect among companion plants, planting ratio and type. As for the absorption of inorganic components, the companion planting showed better absorption than monoculture of cherry tomatoes, as favorable growth, and there was an interaction effect among the individual factors. The sugar content was higher than the standard sugar content of 5.8 brix in both the treatment plots at the control, and vitamin C content was higher than the control at 26.27mg/100g in all treatment plots, but there wasn't statistically significant difference. The soil pH in the cultivation plot ranges from 5.5 to 9.0 and was weakly alkaline in all treatment plots except zinnia, showing low contents of phosphoric acid, exchageable potassium, calcium and magnesium. Conclusion: This study was conducted to analyze various factors such as the growth of cherry tomatoes, contents of inorganic components, sugar content and vitamin C content of fruits, and soil analysis according to companion plants, planting type, and planting ratio. We will study sugar content by measuring the change in growth every phase of fruits.

Evaluation of optimal planting combination considering growth characteristics of major landscaping groundcover plants (조경용 주요 지피식물의 생장 특성을 고려한 식재조합 및 혼식 적합성 평가)

  • Han, Seung Won;Jang, Ha Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.197-205
    • /
    • 2020
  • With the purpose of designing companion planting of groundcover plants for ornamental uses, this study identified the yearly growth characteristics of nine species of different life forms, analyzed the coverage characteristics of individual plants, and suggested combinations of plants suitable for each life form. Polygonatum odoratum var. pluriflorum, Liriope platyphylla and Hosta capitata, as short-grained plants that can grow to more than 20 cm, tended to grow for 60 days after planting in April and maintain their shape thereafter. Their aerial parts started to wither and enter dormancy after September. Saxifraga stolonifera, Dianthus chinensis and Sedum middendorffianum tended to continuously grow until September after planting in April and their growth declined after September. Lysimachia nummularia, as a creeping plant that grows creeping on the ground, started to show a rapid growth three months after planting. Sedum sarmentosum grew slowly until August and the aerial parts started to wither from September when the temperature decreases. The coverage characteristics of these nine species that grow differently after companion planting were surveyed and the growth of Sedum sarmentosum showed the highest number of companions. It was found that Hosta capitata can be companion planted with Sedum middendorffianum, Saxifraga stolonifera, and Lysimachia nummularia. These results indicate that among different shoot growth types species propagated with their stems creeping on the ground or those that can grow vegetatively with non-rhizome parts are more suitable for companion planting with others than those of which rhizomes branch.

Suggestions for Multi-Layer Planting Model in Seoul Area Based on a Cluster Analysis and Interspecific Association (식생 군집분석과 종간친화력 분석을 통한 서울형 다층구조 식재모델 제안)

  • Kim, Min-Kyung;Sim, Woo-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.106-127
    • /
    • 2010
  • Although multi-layer planting methods are more widely used as a method for clustered planting and environmental programs such as plant remediation, difficulties have been faced in applying those to planting design. This study develops a basic planting model that can be applied to multi-layer planting in basis on an analysis of forest structures in the Seoul area. An optimal number of clusters was determined through the ISA (Indicator Species Analysis), and 7 basic clusters were found through a cluster analysis by using PC ORD 4.0 software specifically developed for ecological analysis. The 7 basic clusters include the following communities: the Quercus acutissima Community, Sorbus alnifolia-Quercus mongolica Community, Pinus rigida-Pinus densifiora Community, Rododendron mucronulatum var. mucronulatum-Quercus mongolica Community, Juniperus rigida-Quercus mongolica Community, Rododendron mucronulatum var. mucronulatum-Pinus densiflora Community, and Rododendron sclippenbachii-Quercus mongolica Community. The study also selected 57 species with at least a 10% frequency among the plant species existing in the Seoul area and suggested both a companion species and available similar alternative species by conducting an additional interspecific association analysis. This study may help to enhance usefulness of the model in architectural planting design. In addition, the two results named above were synthesized to develop a multi-layer planting model that can be utilized in landscape planting design by selecting similar alternative species through the interspecific association analysis, which includes 7 clusters of natural plants. The multi-layer planting model can be widely applied to design planting because the model has an average target cover range based on the average value of a transformed likelihood.

Yield and Quality of Forage Produced by Mixed Planting of Soybean and Corn (옥수수와 사료용 콩 혼작에 의한 조사료 수량 및 품질)

  • Seo, Jin-Dong;Chae, Jong-Hyun;Park, Ji-Ho;Kim, Min-Su;Kwon, Chan-Ho;Lee, Jeong-Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.105-109
    • /
    • 2014
  • The soybean [Glycine max (L.) Merr.], an edible legume, has a high protein content in both its hay and grain, so it is often used as a supplement for other forages that have a deficient protein concentration. Therefore, this study investigated the forage quality and yield in the case of mixed planting of soybean and corn. The forage yield and quality were assessed for three cropping patterns: soybean mono planting, corn mono planting, and mixed planting of soybean and corn. For planting, this study used a forage corn cultivar, Kwangpyeongok, and three recombinant inbreed lines, W2, W4, and W11, selected from Glycine soja (PI483463)${\times}$G. max (Hutcheson). The mixed planting of soybean and corn produced a higher forage yield than the corn mono cropping. The crude protein and crude fat content were also increased with the mixed planting of soybean and corn when compared with the corn mono cropping. Some decrease of ADF and NDF, and increase for RFV in mixed planting of soybean and corn than corn mono cropping. Therefore, the results show that mixed planting of soybean and corn is an effective cropping system to improve the forage quality.

An Analysis of Status Quo on the Multi-layer Planting at the landscape Planting Area in Apartment and Neighborhood Parks in Seoul Metropolitan Area (조경식재공간에서 다층식재의 실태분석 -수도권 아파트와 근린공원을 중심으로-)

  • 심우경;이동익
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.140-151
    • /
    • 2001
  • This study based on the theoretical understanding of multi-layer planting which have engineering, ecological and landscape benefits, was conducted to find out the status of multi-layer planting in the apartment and neighborhood park in Seoul. This study was also aimed to seek for the problematic matters, and suggest a solution on the current multi-layer planting. The results of this study were as follows; 1) Since landscape woody plants have been classified just as tree and shrub in Korea, the classification for the multi-layer planting has been unreasonable, and landscape woody plants might have been classified as tree, sub-tree and shrub, or upper, middle, and lower-layer, It could be defined that upper layer is over eight meters in full growth, middle over 3-8 meters and lower under 3 meters. 2) In apartments, the upper layer consisted of eighteen species, the middle and lower layer seven species each. In neighborhood parks, the upper layer consisted of fifteen species, and the middle and lower layer five species each. 3) In terms of planting year of the surveyed areas, there were no differences in the number of species when planting year of the apartment was divided into two groups, the first half(1900-1995) and the second(1996-2000). But, in terms of individual occupation, the percentage was decreased in upper layer, while there was increasing in middle and lower layer. 4) As the result of survey of multi-layered area, it appeared that apartment was shown 0.65 percent and neighborhood park 0.61 percent of the planted area, which was less than 1 percentage of landscape architecturally planted area. 5) In apartment, the number of individual in middle layers has been increased in the first half and the second, but with respect to the correlation with multi-layered area, the apartments had the "$\rho$=0.208", saying that increasing middle layer was scattered planting instead of multi-layered planting. 6) In planting at the apartments in Korea, the planting density was limited, because the layer division was restricted to only tree and shrub. On the contrary, it was divided into upper, middle and lower tree in Japan. Therefore, in Korea, it should be classified as the planting density by dividing into tree, sub-tree, and shrubs, or upper, middle and lower tree by the law. And, it should be considered that the multi-layered planting has a proper organic relation as well as the planting density.g density.

  • PDF

Evaluation of Companion Crop for Conservation of Soil in Highland Cultivativation of Chinese Cabbage (고랭지배추 재배지 토양보전을 위한 동반작물 도입 평가)

  • Kim, Ki-Deog;Ahn, Jae-Hoon;Lee, Jeong-Tae;Hong, Soon-Choon;Hwang, Seon-Woong;Kim, Chung-Guk
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Four cover plants such as Phlox subulata, Glechoma hederacea var. longituba, Sedum middendorffianum and Saxifraga laciniata were evaluated to investigate the effect of companion planting on reducing soil erosion in Chinese cabbage cultivated highland. The experiment was conducted using lysimeters of $5\;m{\times}2\;m$ (length$\times$width) with 5, 15 and 30% slopes. Companion plants except Sedum middendorffianum did not interface with growth of Chinese cabbage Glechoma hederacea var. longituba and Sedum middendorffianum grew faster than Phlox subulata and Saxifraga laciniata in the early growth stage suer transplanting, resulting in fast ground covering, but the ground covering by Phlox subulata and Saxifraga laciniata was delayed because growth suppression by high air temperature during summer season. Soil erosion became severe as increasing degree of slope. Assessments of the four cover plants were conducted in relation to soil conservation characteristic of scenery, endurance to the environment stress, plant growth and weed suppression. From the assessments, Phlox subulata was superior to other intercropping crops tested for reducing soil erosion in highland cultivation of Chinese cabbage.

Growth Characteristics of Strawberry and Kidney Bean Companion Planting in Building-integrated Urban Agriculture (건축물 일체형 도시농업에서 딸기와 강낭콩 공영식재에 따른 생육 특성)

  • Hyeon A Lee;Sun Yeong Lee;Yong Han Yoon;Jin Hee Ju
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.955-964
    • /
    • 2023
  • This study was conducted to obtain basic data on efficient and eco-friendly crop cultivation for urban residents who enjoy urban agriculture as a hobby or leisure activity. We planted strawberry(Fragaria x ananassa)(S) and kidney bean (Phaseolus vulgaris var. humilis)(K) in different ratios to analyze the differences in soil environment, growth, physiology, and productivity, and to investigate the effects. Strawberry growth was optimal with S1K2 ratio, whereas the S1K1 ratio treatment showed the highest levels of physiology and productivity. In terms of growth and physiology, kidney beans tended to perform best in S1K2 treatment. The average number of productive pods was two, with a highest average value of 2.3 being recorded in S2K1 treatment planted with a high percentage of strawberries. In terms of growth, physiology, and prodctivity our findings indicate that it would be desirable to plant starwberries and kidney bean in a 1:1 ratio. However, considering the environmental characteristics of walls and rooftops, it is necessary to effectively manage crops suitable for these conditions. Furthermore, additional studies should be conducted to analyze the quality of fruits and seeds producted, both qualitatively and quantitatively in the future.