• Title/Summary/Keyword: compaction density

Search Result 422, Processing Time 0.028 seconds

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

Physicochemical Characteristics and Microbial Activity in the Various Urban Soils (도시에서 다양한 토양의 물리화학적 특성과 미생물 활성)

  • Kong, Hak-Yang;Cho, Kang-Hyun
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.369-375
    • /
    • 2000
  • Although urban soils must be well understood in order to ensure their conservation and optimum use, these intensively managed and disturbed soils have not been extensively investigated up to now. Urban soils from forest, lawn, streetside, and bare ground and under pavement in Inchon had high bulk density as a result of widespread trampling-induced soil compaction. The various urban soils including forests showed lower water content and higher temperature as compared with rural forest soil. Chemically, soils from urban areas had an unusual neutral pH and low organic matter content. Total bacterial numbers in urban soils was only 5∼50% of that in the rural forest soil. An analysis of stepwise multiple regression revealed that soil organic matter was the most important predictor variable on total bacterial number. The dehydrogenase activity of most urban soils was not significantly different from that of rural forest soil, whereas the microbial activity of soils under pavement was lower. Our investigations show that inadequate organic matter of highly compacted soils has adversely affected the abundance of microorganisms involving nutrient cycling in urban soils.

  • PDF

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM) (고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Hong-Moule;Kim, Taek-Soo;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures (모래-실트 혼합토의 구속압력에 따른 전단특성 파악)

  • Kim, Uk-Gie;Zhuang, Li
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.27-38
    • /
    • 2015
  • Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.

Characterization of rapidly consolidated γ-TiAl

  • Kothari, Kunal;Radhakrishnan, Ramachandran;Sudarshan, Tirumalai S.;Wereley, Norman M.
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2012
  • A powder metallurgy-based rapid consolidation technique, Plasma Pressure Compaction ($P^2C^{(R)}$), was utilized to produce near-net shape parts of gamma titanium aluminides (${\gamma}$-TiAl). Micron-sized ${\gamma}$-TiAl powders, composed of Ti-50%Al and Ti-48%Al-2%Cr-2%Nb (at%), were rapidly consolidated to form near-net shape ${\gamma}$-TiAl parts in the form of 1.0" (25.4 mm) diameter discs, as well as $3"{\times}2.25"$ ($76.2mm{\times}57.2mm$) tiles, having a thickness of 0.25" (6.35 mm). The ${\gamma}$-TiAl parts were consolidated to near theoretical density. The microstructural morphology of the consolidated parts was found to vary with consolidation conditions. Mechanical properties exhibited a strong dependence on microstructural morphology and grain size. Because of the rapid consolidation process used here, grain growth during consolidation was minimal, which in turn led to enhanced mechanical properties. Consolidated ${\gamma}$-TiAl samples corresponding to Ti-48%Al-2%Cr-2%Nb composition with a duplex microstructure (with an average grain size of $5{\mu}m$) exhibited superior mechanical properties. Flexural strength, ductility, elastic modulus and fracture toughness for these samples were as high as 1238 MPa, 2.3%, 154.58 GPa and 17.95 MPa $m^{1/2}$, respectively. The high temperature mechanical properties of the consolidated ${\gamma}$-TiAl samples were characterized in air and vacuum and were found to retain flexural strength and elastic modulus for temperatures up to $700^{\circ}C$. At high temperatures, the flexural strength of ${\gamma}$-TiAl samples with Ti-50%Al composition deteriorated in air by 10% as compared to that in vacuum. ${\gamma}$-TiAl samples with Ti-48%Al-2%Nb-2%Cr composition exhibited better if not equal flexural strength in air than in vacuum at high temperatures.

The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants (토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향)

  • 이소정;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF

A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground (방조제 축조 예정지반의 지진에 의한 액상화 거동 평가)

  • 도덕현;장병욱;고재만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

A study on the Evaluation of Permeability and Structure for Calcium Bentonite-Sand Mixtures (칼슘 벤토나이트-모래 혼합차수재의 투수 및 구조 특성에 관한 연구)

  • Yun, Seong Yeol;An, Hyeon Kyu;Oh, Minah;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • This study was intended to evaluate the water permeability and structure for calcium bentonite-sand mixtures to utilize calcium bentonite as a liner. This study conducted physico-chemical properties tests, compaction tests, permeability test and Scanning Electron Microscopy analysis (SEM) analysis. It was found the higher the ratio of calcium bentonite, the lower the dry density with coefficient of permeability, and the higher the optimum moisture content. In particular, SEM analysis was found the higher the ratio of calcium bentonite, the higher the area of the montmorillonite particles. In conclusion, the optimum coefficient of permeability that finds the landfill liner condition (must be less than $1{\times}10^{-7}cm/sec$) was obtained when the ratio of calcium bentonite was 40% or higher. These findings may improve the understanding of the calcium bentonite as a liner. Calcium bentonite shows a similar permeability to sodium bentonite 7% when mixed at 40% or more. Therefore, it is considered that calcium bentonite can be utilized as a liner.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.