• Title/Summary/Keyword: compaction behavior

Search Result 241, Processing Time 0.033 seconds

Centrifugal Model Test on Behavior of Underground Corrugated Steel Plate with Compaction Degree (다짐도에 따른 지중파형강판의 거동에 대한 원심모형실험)

  • Heo, Yol;Kwon, Seonuk;Kim, Hongjong;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.83-90
    • /
    • 2011
  • A series of centrifugal model test was conducted to investigate the distribution of vertical earth pressure on circular ductile underground corrugated steel plate waterway culvert with considering the compaction degree of the backfill in the high landfilled embankment section. The compaction degree of backfill was varied to 80, 85, 90, and 95% at the 53g-level gravity considering the similarity of the site. As a result of this test, the load reduction factor by the arching effect of the top of corrugated steel plate showing ductile behavior nearly agreed with the load reduction factor according to the compaction degree of backfill specified in the AISI(2002) design method. The vertical earth pressure measured at the top of the corrugated steel plate was linearly decreased as the compaction degree increased. The greater the compaction degree of backfill was, the greater the reduction of surface loading on the top of the corrugated steel plate by arching effect. The load decreased by arching effect on top of the corrugated steel plate was transferred to the side backfill of the corrugated steel plate(EP 1) and the outside of backfill(EP 3).

Estimation of Ultimate Bearing Capacity for Randomly Installed Granular Compaction Pile Group (임의의 배치형태로 설치된 무리형태의 조립토 다짐말뚝에 대한 극한지지력의 평가)

  • 신방웅;채현식;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2001
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of fecundation built on the reinforced soil. Also the granular compaction piles accelerate the consolidation of soft ground using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. In the present study, the estimation procedure for the ultimate bearing capacity of randomly installed granular compaction pile group is proposed. Also, carbon rod tests have been peformed for verifying the group effect of granular compaction piles and the behavior characteristics such as bulging failure zone on granular compaction piles. From the test results, it is found that bulging failure shape of granular compaction piles was conical shape and the ultimate bearing capacity increased as the spacing of piles became gradually narrow. Also, from the proposed method in this study, the optimal locations of granular compaction piles with various installed cases are analyzed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of pile group.

  • PDF

Effect of Concrete Filling Conditions on Flexural Behavior of Beam Members (콘크리트 충전상태에 따른 보부재의 휨거동에 관한 연구)

  • 장일영;윤영수;노병철;박훈규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.3-11
    • /
    • 2000
  • There is a possibility of poor-state concrete filling condition due to segregation and interlocking of aggregate and paste when a high performance concrete is used at reinforced concrete structure without compaction. This study was conducted to evaluate the flexural behavior of high performance concrete beams with design parameters such as c, t and different concrete filling conditions. Different concrete filling conditions were intentionally made such that the first type specimen was soundly cast to obtain the perfect concrete filling condition. Second type was cast in such a way that up to the longitudinal tensile reinforcement from the top, good concrete was filled while poor concrete was poured for the bottom part to simulate the poor strength, workability and unsatisfactory compaction. Third type was cast in such a was that up to the neutral axis of the beam section from the top, good concrete was filled while so did for the bottom part as the second type. The test results were analyzed in terms of load-displacement response, failure pattern, crack width and crack spacing. The test results indicate that have no effect of concrete filling conditions on the yielding strength of structures. But, have a grate influence on the stiffness and ductility of structures.

Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests (실내시험을 이용한 저치환 보강지반의 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

The Effect of Ti Powder addition on Compaction Behavior of TiO2 Nano Powder (Ti 분말 첨가가 TiO2 나노 분말의 성형성에 미치는 영향)

  • Park, Jin-Sub;Kim, Hyo-Seob;Lee, Ki-Seok;Lee, Jeong-Goo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2009
  • The compaction response of $TiO_2$ nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and $1400^{\circ}C$ sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered $TiO_2$. But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and $1400^{\circ}C$, respectively.

Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM (다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구)

  • Lee, Kyung-Hun;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2010
  • This paper describes multiparticle finite element model (MPFEM)-based powder compaction simulations performed to demonstrate the densification of compacted aluminum powders. A 2D MPFEM was used to explore the densification of a collection of aluminum particles with different average particle sizes under various ram speeds. Individual particles are discretized using a finite element mesh for a detailed description of contact mechanics. Porous aluminum powders with average particle sizes of $20\;{\mu}m$ and $3\;{\mu}m$ were compressed uniaxially at ram speeds of 5, 15, 30, and 60 mm/min by using an MTS servo-hydraulic tester. The slow ram speed was of great advantage to powder densification in low compaction force due to sufficient particle rearrangement. Owing to a decrease in the average particle size of aluminum, the compaction force increased.

Characteristics of Dynamic Compaction Energy for a Non-plastic Dredged Soil (비소성 준설토의 동다짐 에너지 특성 연구)

  • Hwang, Seong Chun;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.110-117
    • /
    • 2011
  • Seashore landfill projects use undersea pump dredging method for construction of airport and factory site. Coarse grain soil from the dredging is considered for use at inland. West sea shore bottom consists of primarily coarser grained silt-sand and this component contains far more percentage than is the case with East sea and South sea area. This soil shows very different characteristic at consolidation and compaction behavior. This research targets to utilize this type of dredging soil. Test specimen is from West sea (Saemangum) dredged soil landfill site. Model analysis is done for getting prediction of original soil relative density and N-value from dynamic compaction energy variance. Dynamic compaction energy is calculated for efficient foundation design.

Relative Settlement Analysis of Soft Ground (연약지반의 상대적 침하 거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.229-240
    • /
    • 2023
  • Instruments are installed in soft ground improvement projects to manage economic and safe construction. When analyzing data, the amount of settlement data over time can be used to understand the overall ground settlement behavior, but it is difficult to analyze the interrelatedness between measurement points. Therefore, to analyze the relative compressive settlement behavior between measurement points, the settlement amount and velocity were processed and defined as the mean settlement difference index (ASi,j) and the slope difference index (SDIi,j). Plotted in the mean settlement difference index - slope difference index (ASi,j-SDIi,j) coordinate system. As a result of the analysis of the relative compaction subsidence behavior between the measuring points, the relationship between the measuring points in the average subsidence difference index - slope difference index coordinate system moved to area 1 as the compaction was completed. By continuously plotting the movement path of the observation point in the corresponding coordinate system, the relative settlement behavior between the measurement points was analyzed, and it was possible to check whether the settlement behavior of the two measurement points was stable or unstable depending on the direction of the path.

Stress-Strain Behavior of Clays under Repeated Loading (반복재하(反復載荷)에 의한 점성토(粘性土)의 응력변형특성(應力變形特性))

  • Cho, Jae Hong;Kang, Yea Mook;Ryu, Neung Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.329-344
    • /
    • 1987
  • This paper described the behavior under repeated loading in triaxial compression test on clay. The experiment was conducted to investigate the influence of controlled various over-consolidation ratio and compaction energy, on the stress-strain behavior of clays. 1. The difference of deviator stress during repeated loading was greatly appeared at large strain. And pore water pressure was decreased at initial of unloading, but it was increased again before long. 2. The recoverable elastic strain (${{\Delta}{\varepsilon}e}$) and the slope of un-reloading were decreased with the increment of over-consolidation ratio (OCR). 3. The recoverable elastic strain (${{\Delta}{\varepsilon}e}$) was increased with the increment of strain rate but it was decreased with the increment of strain in strain rate tests. The slope of un-reloading (Eur) tends to increase with the increment of strain rate and it was decreased with the increment of strain. 4. The recoverable elastic strain was greatly increased with the increment of compaction energy and it slightly tends to decrease with the increment of strain on various compaction energy. The slope of un-reloading was not appeared markedly with increment of compaction energy but it tends to decrease with the increment of strain generally.

  • PDF

Influence of Granules Characteristics and Compaction Pressure on the Microstructure and Mechanical Properties of Sintered Alumina

  • Cho, Yong-Ick;Chung, Sang-Gwi;Cho, Sung-Yong;Kim, Seung-Jai;Nobuhiro Shinohara;Masataro Okumiya
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.212-217
    • /
    • 2001
  • The influence of granules characteristics and compaction pressure on the microstructure and mechanical properties of sintered as a function of slurry dispersion state. The characteristics and the compaction behavior of the spray dried alumina granules considerably affected the microstructure as well as the mechanical properties of the sintered body. In the green bodies formed with granules prepared with a dispersed slurry, the granules with dimple clearly existed and caused pore defects in sintered body. These dimples were clearly present even in the green body prepared at 180 MPa. The pores between the granules were not removed during pressing and sintering, and remained in the sintered body. In contrast, in the granules fabricated from a flocculated slurry, the destroy of granules at the contact points was observed with increasing pressure. Sintered bodies fabricated with fewer defects showed strength increase. For the sample fabricated with flocculated slurry, the pores at the boundaries of granules were small and more irregular shape compared with those of dispersed slurry.

  • PDF