• Title/Summary/Keyword: compaction behavior

Search Result 241, Processing Time 0.031 seconds

Densification Behavior of Metal and Ceramic Powder under Cold Compaction

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.179-180
    • /
    • 2006
  • Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.

  • PDF

Yield and Compaction Behavior of Rapidly Solidified AI-Si Alloy Powders (급속응고 Al-Si 합금 분말의 항복과 압축거동)

  • 김형섭;장기태;조성석;천병선
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 1997
  • In order to obtain high quality products in powder metallurgy, it is important to control and understand the densification behavior of metal powders. The effect of the characters of powders on the compaction behavior was studied in this study by using three types of powders produced by the gas atomization, the centrifugal atomization and the twin roll-pulverization. The shape of the powders was a major factor in the apparent or tap density, and the deformation resistance of the matrix of the powders was a major factor in compactibility. Han's yield function (eq.2) for metal powders was simplified from the relationship based on the experimental results of copper powders. In spite of some assumptions, the calculated compaction curves using a new yield functionw was in accordance with the experimental results.

  • PDF

Stage 1 compaction behavior of tool steel under die pressing (금형압축 하에서 공구강 분말의 1단계 압축거동)

  • Kim, Gi-Tae;Kim, Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1073-1080
    • /
    • 1997
  • The stage 1 compaction behavior of tool steel powder under die pressing was studied. The friction effects between the powder and the die wall under different die pressing modes were also investigated. The elastoplastic constitutive equations based on the yield functions by Fleck et al. and by Shima and Oyane were implemented into a finite element program to simulate die compaction processes. Finite element calculations were compared with experimental data for densification and density distribution of tool steel powder under single and double action die pressing. Finite element calculations using the yield function by Fleck et al. agreed better with experimental data than by Shima and Oyane.

A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction (냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1376-1383
    • /
    • 2006
  • Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.

A Study on Effect of Ground Improvement by Sand Compaction Pile Changing Replacement Width (모래다짐말뚝 개량폭에 따른 보강효과에 관한 연구)

  • Kim, Si-Woon;Jung, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.67-73
    • /
    • 2005
  • In this research, centrifuge model experiments and numerical approach of finite element method to analyze experimental results were performed to investigate the behavior of improved ground with sand compaction piles. One of typical clay minerals, kaolinite powder, were prepared for soft ground in model tests. Jumunjin standard sand was used to sand compaction pile installed in the soft soil. In order to investigate the characteristics of mechanical behavior of sand compaction piles with low replacement ratios, centrifuge model experiments with the replacement ratio of 40%, changing the width of improved area with respect to testing results the width of surcharge loads, were carried out to obtain of bearing capacity, characteristics of load-settlement, vertical stresses acting on the sand pile and the soft soil failure mechanism in improved ground.

  • PDF

A Review on Intelligent Compaction Techniques in Railroad Construction

  • Oh, Jeongho
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.80-84
    • /
    • 2014
  • The purpose of this paper was to review Intelligent Compaction (IC) techniques, which is regarded relatively new to the railroad roadbed construction activity. Most of civil structures are built on roadbed that supposed to provide adequate load bearing support to the upper structure through the qualified compaction process. However, it is not uncommon for structure failure attributed to inadequate compaction control take place in field sites. Unlike traditional compaction control method to check field density at several locations, IC techniques continuously measure various compaction quality indices that represent compaction uniformity. In this paper, a series of literature review relevant to IC techniques was conducted to provide concise summary on the following categories: 1) background of IC technique; 2) Summary of IC vendors and basic principles; 3) modeling of IC behavior, and 4) case study along with correlation between IC with other measurements. In summary, IC technologies seem to be promising in future railroad construction to achieve better compaction quality control so that the serviceability of railroad can be ensured with minimizing rehabilitation and maintenance activities.

Compaction and Sintering Behavior of $Al_2O_3$-modified Ziroconium Titanate $(ZrTiO_4)$

  • Chun, Myoung-Pyo;Geun, Hur;Myoung, Seung-Jae;Cho, Jung-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.822-823
    • /
    • 2006
  • The compaction and sintering behavior of zirconium titanate $(ZrTiO_4)$ was investigated by means of the measurement of sintering density and shrinkage, and the observation of microstructure. With increasing the content of $Al_2O_3$ additive, $Al_2O_3$-modified zirconium titanate samples fired at $1300^{\circ}C$ showed the anisotropic shrinkage behavior that the upper region of sintered body has higher sintering shrinkage than the low region. This difference of sintering shrinkage decreased with increasing firing temperature from 1300 to $1400^{\circ}C$. The SEM micrographs of powder compation show that the anisotropic shrinkage behavior is related with non-uniform density in a uniaxial compaction.

  • PDF

An Experimental Study on the Ground Improvement of Waste Landfill (쓰레기매립지반 개량에 관한 실험적 연구)

  • Chon, Yong-Back;Jeong, Young-Gab
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.341-348
    • /
    • 2004
  • This study experimented dividing compaction load by dynamic compaction test and an oil pressure hammer compaction test for consolidation strength characteristics experimental feedback about soil change aspect of waste landfill ground and revelation of compaction effect as underground research about consolidation behavior of waste landfill ground by compaction load, foot weight and percussion number of times were adapted differently each other with uniformity drop head when dynamic compaction test, and hammer scale and percussion number of times were adapted differently also when oil pressure hammer compaction test.

  • PDF

A Study on the Yield Criterion of Metal Powders (금속 분말의 항복조건에 관한 연구)

  • 박성준;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.131-138
    • /
    • 1996
  • A new yield criterion for metal powder compaction based on continuum mechanics has been proposed. It includes three parameters to characterize the geometrical hardening of powder compact and strain hardening of incompressible metal matrix. The elasto-plastic finite element method to describe compaction of metal powders has been formulated using the new yield criterion. The values of parameters in the yield criterion can be determined using cold isostatic pressing(CIP). The finite element method can simulate compaction behavior of various copper powders.

  • PDF

Compaction techniques and construction parameters of loess as filling material

  • Hu, Chang-Ming;Wang, Xue-Yan;Mei, Yuan;Yuan, Yi-Li;Zhang, Shan-Shan
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1143-1151
    • /
    • 2018
  • Loess often causes problems when used as a filling material in the construction of foundations. Therefore, the compaction technique, shear behavior, and bearing capacity of a filled foundation should be carefully considered. A series of tests was performed in this study to obtain effective compaction techniques and construction parameters. The results indicated that loess is strongly sensitive to water. Thus, the soil moisture content should be kept within 12%-14% when it is used as a filling material. The vibrating-dynamic combination compaction technique is effective and has fewer limitations than other methods. In addition, the shear strength of the compacted loess was found to increase linearly with the degree of compaction, and the soil's compressibility decreased rapidly with an increase in the degree of compaction when the degree of compaction was less than 95%. Finally, the characteristic value of the bearing capacity increased with an increase in the degree of compaction in a ladder-type way when the degree of compaction was within 92%-95%. Based on the test data, this paper could be used as a reference in the selection of construction designs in similar engineering projects.